1
|
Han CT, Nguyen KDQ, Berkow MW, Hussain S, Kiani A, Kinnebrew M, Idso MN, Baxter N, Chang E, Aye E, Winslow E, Rahman M, Seppälä S, O'Malley MA, Chmelka BF, Mertz B, Han S. Lipid membrane mimetics and oligomerization tune functional properties of proteorhodopsin. Biophys J 2023; 122:168-179. [PMID: 36352784 PMCID: PMC9822798 DOI: 10.1016/j.bpj.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ∼2 and ∼4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR's rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2-6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR's functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR's photocycle. These findings demonstrate that oligomerization impacts PR's photocycle kinetics, while lipid-based membrane mimetics strongly affect PR's active population via different mechanisms.
Collapse
Affiliation(s)
- Chung-Ta Han
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Khanh Dinh Quoc Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Maxwell W Berkow
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Sunyia Hussain
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Ahmad Kiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Maia Kinnebrew
- College of Creative Studies, Biology Department, University of California, Santa Barbara, Santa Barbara, California
| | - Matthew N Idso
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Naomi Baxter
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Evelyn Chang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Emily Aye
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Elsa Winslow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Mohammad Rahman
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California.
| |
Collapse
|
2
|
Unno M, Hirose Y, Mishima M, Kikukawa T, Fujisawa T, Iwata T, Tamogami J. Spectroscopic approach for exploring structure and function of photoreceptor proteins. Biophys Physicobiol 2021; 18:127-130. [PMID: 34178563 PMCID: PMC8214923 DOI: 10.2142/biophysico.bppb-v18.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Masaki Mishima
- Department of Molecular Biophysics, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, Hachioji, Tokyo 192-0392, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tatsuya Iwata
- Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
3
|
Fujisawa T, Abe M, Tamogami J, Kikukawa T, Kamo N, Unno M. Low-temperature Raman spectroscopy reveals small chromophore distortion in primary photointermediate of proteorhodopsin. FEBS Lett 2018; 592:3054-3061. [PMID: 30098005 DOI: 10.1002/1873-3468.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 11/07/2022]
Abstract
Proteorhodopsin (PR) is a microbial rhodopsin functioning as a light-driven proton pump in aquatic bacteria. We performed low-temperature Raman measurements of PR to obtain the structure of the primary photoproduct, the K intermediate (PRK ). PRK showed the hydrogen-out-of-plane modes that are much less intense than those of bacteriorhodopsin as the prototypical light-driven proton pump from haloarchaea. The present results reveal the significantly relaxed chromophore structure in PRK , which can be coupled to the slow kinetics of the K intermediate. This structure suggests that PR transports protons using the small energy storage within the chromophore at the start of its photocycle.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Japan
| | - Masahiro Abe
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Takashi Kikukawa
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Japan
| |
Collapse
|
4
|
Tamogami J, Kikukawa T, Ohkawa K, Ohsawa N, Nara T, Demura M, Miyauchi S, Kimura-Someya T, Shirouzu M, Yokoyama S, Shimono K, Kamo N. Interhelical interactions between D92 and C218 in the cytoplasmic domain regulate proton uptake upon N-decay in the proton transport of Acetabularia rhodopsin II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:35-45. [PMID: 29684719 DOI: 10.1016/j.jphotobiol.2018.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/07/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
Abstract
Acetabularia rhodopsin II (ARII or Ace2), an outward light-driven algal proton pump found in the giant unicellular marine alga Acetabularia acetabulum, has a unique property in the cytoplasmic (CP) side of its channel. The X-ray crystal structure of ARII in a dark state suggested the formation of an interhelical hydrogen bond between C218ARII and D92ARII, an internal proton donor to the Schiff base (Wada et al., 2011). In this report, we investigated the photocycles of two mutants at position C218ARII: C218AARII which disrupts the interaction with D92ARII, and C218SARII which potentially forms a stronger hydrogen bond. Both mutants exhibited slower photocycles compared to the wild-type pump. Together with several kinetic changes of the photoproducts in the first half of the photocycle, these replacements led to specific retardation of the N-to-O transition in the second half of the photocycle. In addition, measurements of the flash-induced proton uptake and release using a pH-sensitive indium-tin oxide electrode revealed a concomitant delay in the proton uptake. These observations strongly suggest the importance of a native weak hydrogen bond between C218ARII and D92ARII for proper proton translocation in the CP channel during N-decay. A putative role for the D92ARII-C218ARII interhelical hydrogen bond in the function of ARII is discussed.
Collapse
Affiliation(s)
- Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Keisuke Ohkawa
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Toshifumi Nara
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Seiji Miyauchi
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Graduate School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Tomomi Kimura-Someya
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| | - Kazumi Shimono
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Graduate School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1741-1750. [DOI: 10.1016/j.bbabio.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 02/01/2023]
|
6
|
Nakamura S, Kikukawa T, Tamogami J, Kamiya M, Aizawa T, Hahn MW, Ihara K, Kamo N, Demura M. Photochemical characterization of actinorhodopsin and its functional existence in the natural host. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1900-1908. [PMID: 27659506 DOI: 10.1016/j.bbabio.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/29/2022]
Abstract
Actinorhodopsin (ActR) is a light-driven outward H+ pump. Although the genes of ActRs are widely spread among freshwater bacterioplankton, there are no prior data on their functional expression in native cell membranes. Here, we demonstrate ActR phototrophy in the native actinobacterium. Genome analysis showed that Candidatus Rhodoluna planktonica, a freshwater actinobacterium, encodes one microbial rhodopsin (RpActR) belonging to the ActR family. Reflecting the functional expression of RpActR, illumination induced the acidification of the actinobacterial cell suspension and then elevated the ATP content inside the cells. The photochemistry of RpActR was also examined using heterologously expressed RpActR in Escherichia coli membranes. The purified RpActR showed λmax at 534nm and underwent a photocycle characterized by the very fast formation of M intermediate. The subsequent intermediate, named P620, could be assigned to the O intermediate in other H+ pumps. In contrast to conventional O, the accumulation of P620 remains prominent, even at high pH. Flash-induced absorbance changes suggested that there exists only one kind of photocycle at any pH. However, above pH7, RpActR shows heterogeneity in the H+ transfer sequences: one first captures H+ and then releases it during the formation and decay of P620, while the other first releases H+ prior to H+ uptake during P620 formation.
Collapse
Affiliation(s)
- Shintaro Nakamura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Masakatsu Kamiya
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Martin W Hahn
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|