1
|
Pal S, Udgaonkar JB. Slow Misfolding of a Molten Globule form of a Mutant Prion Protein Variant into a β-rich Dimer. J Mol Biol 2024; 436:168736. [PMID: 39097185 DOI: 10.1016/j.jmb.2024.168736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Misfolding of the prion protein is linked to multiple neurodegenerative diseases. A better understanding of the process requires the identification and structural characterization of intermediate conformations via which misfolding proceeds. In this study, three conserved aromatic residues (Tyr168, Phe174, and Tyr217) located in the C-terminal domain of mouse PrP (wt moPrP) were mutated to Ala. The resultant mutant protein, 3A moPrP, is shown to adopt a molten globule (MG)-like native conformation. Hydrogen-deuterium exchange studies coupled with mass spectrometry revealed that for 3A moPrP, the free energy gap between the MG-like native conformation and misfolding-prone partially unfolded forms is reduced. Consequently, 3A moPrP misfolds in native conditions even in the absence of salt, unlike wt moPrP, which requires the addition of salt to misfold. 3A moPrP misfolds to a β-rich dimer in the absence of salt, which can rapidly form an oligomer upon the addition of salt. In the presence of salt, 3A moPrP misfolds to a β-rich oligomer about a thousand-fold faster than wt moPrP. Importantly, the misfolded structure of the dimer is similar to that of the salt-induced oligomer. Misfolding to oligomer seems to be induced at the level of the dimeric unit by monomer-monomer association, and the oligomer grows by accretion of misfolded dimeric units. Additionally, it is shown that the conserved aromatic residues collectively stabilize not only monomeric protein, but also the structural core of the β-rich oligomers. Finally, it is also shown that 3A moPrP misfolds much faster to amyloid-fibrils than does the wt protein.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research Pune, Pune 411008, India.
| |
Collapse
|
2
|
Pal S, Udgaonkar JB. Mutations of evolutionarily conserved aromatic residues suggest that misfolding of the mouse prion protein may commence in multiple ways. J Neurochem 2023; 167:696-710. [PMID: 37941487 DOI: 10.1111/jnc.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
The misfolding of the mammalian prion protein from its α-helix rich cellular isoform to its β-sheet rich infectious isoform is associated with several neurodegenerative diseases. The determination of the structural mechanism by which misfolding commences, still remains an unsolved problem. In the current study, native-state hydrogen exchange coupled with mass spectrometry has revealed that the N state of the mouse prion protein (moPrP) at pH 4 is in dynamic equilibrium with multiple partially unfolded forms (PUFs) capable of initiating misfolding. Mutation of three evolutionarily conserved aromatic residues, Tyr168, Phe174, and Tyr217 present at the interface of the β2-α2 loop and the C-terminal end of α3 in the structured C-terminal domain of moPrP significantly destabilize the native state (N) of the protein. They also reduce the free energy differences between the N state and two PUFs identified as PUF1 and PUF2**. It is shown that PUF2** in which the β2-α2 loop and the C-terminal end of α3 are disordered, has the same stability as the previously identified PUF2*, but to have a very different structure. Misfolding can commence from both PUF1 and PUF2**, as it can from PUF2*. Hence, misfolding can commence and proceed in multiple ways from structurally distinct precursor conformations. The increased extents to which PUF1 and PUF2** are populated at equilibrium in the case of the mutant variants, greatly accelerate their misfolding. The results suggest that the three aromatic residues may have been evolutionarily selected to impede the misfolding of moPrP.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune, Pune, India
| | | |
Collapse
|
3
|
Pal S, Udgaonkar JB. Evolutionarily Conserved Proline Residues Impede the Misfolding of the Mouse Prion Protein by Destabilizing an Aggregation-competent Partially Unfolded Form. J Mol Biol 2022; 434:167854. [PMID: 36228749 DOI: 10.1016/j.jmb.2022.167854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The misfolding of the prion protein has been linked to several neurodegenerative diseases. Despite extensive studies, the mechanism of the misfolding process remains poorly understood. The present study structurally delineates the role of the conserved proline residues present in the structured C-terminal domain of the mouse prion protein (moPrP) in the misfolding process. It is shown that mutation of these Pro residues to Ala leads to destabilization of the native (N) state, and also to rapid misfolding. Using hydrogen-deuterium exchange (HDX) studies coupled with mass spectrometry (MS), it has been shown that the N state of moPrP is in rapid equilibrium with a partially unfolded form (PUF2*) at pH 4. It has been shown that the Pro to Ala mutations make PUF2* energetically more accessible from the N state by stabilizing it relative to the unfolded (U) state. The apparent rate constant of misfolding is found to be linearly proportional to the extent to which PUF2* is populated in equilibrium with the N state, strongly indicating that misfolding commences from PUF2*. It has also been shown that the Pro residues restrict the boundary of the structural core of the misfolded oligomers. Overall, this study highlights how the conserved proline residues control misfolding of the prion protein by modulating the stability of the partially unfolded form from which misfolding commences.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research, Pune, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research, Pune, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
4
|
Interdiction in the Early Folding of the p53 DNA-Binding Domain Leads to Its Amyloid-Like Misfolding. Molecules 2022; 27:molecules27154810. [PMID: 35956758 PMCID: PMC9370011 DOI: 10.3390/molecules27154810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this article, we investigate two issues: (a) the initial contact formation events along the folding pathway of the DNA-binding domain of the tumor suppressor protein p53 (core p53); and (b) the intermolecular events leading to its conversion into a prion-like form upon incubation with peptide P8(250-257). In the case of (a), the calculations employ the sequential collapse model (SCM) to identify the segments involved in the initial contact formation events that nucleate the folding pathway. The model predicts that there are several possible initial non-local contacts of comparative stability. The most stable of these possible initial contacts involve the protein segments 159AMAIY163 and 251ILTII255, and it is the only native-like contact. Thus, it is predicted to constitute “Nature’s shortcut” to the native structure of the core domain of p53. In the case of issue (b), these findings are then combined with experimental evidence showing that the incubation of the core domain of p53 with peptide P8(250-257), which is equivalent to the native protein segment 250PILTIITL257, leads to an amyloid conformational transition. It is explained how the SCM predicts that P8(250-257) effectively interdicts in the formation of the most stable possible initial contact and, thereby, disrupts the subsequent normal folding. Interdiction by polymeric P8(250-257) seeds is also studied. It is then hypothesized that enhanced folding through one or several of the less stable contacts could play a role in P8(250-257)-promoted core p53 amyloid misfolding. These findings are compared to previous results obtained for the prion protein. Experiments are proposed to test the hypothesis presented regarding core p53 amyloid misfolding.
Collapse
|
5
|
Bergasa-Caceres F, Rabitz HA. Identification of Two Early Folding Stage Prion Non-Local Contacts Suggested to Serve as Key Steps in Directing the Final Fold to Be Either Native or Pathogenic. Int J Mol Sci 2021; 22:ijms22168619. [PMID: 34445324 PMCID: PMC8395309 DOI: 10.3390/ijms22168619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
The initial steps of the folding pathway of the C-terminal domain of the murine prion protein mPrP(90–231) are predicted based on the sequential collapse model (SCM). A non-local dominant contact is found to form between the connecting region between helix 1 and β-sheet 1 and the C-terminal region of helix 3. This non-local contact nucleates the most populated molten globule-like intermediate along the folding pathway. A less stable early non-local contact between segments 120–124 and 179–183, located in the middle of helix 2, promotes the formation of a less populated molten globule-like intermediate. The formation of the dominant non-local contact constitutes an example of the postulated Nature’s Shortcut to the prion protein collapse into the native structure. The possible role of the less populated molten globule-like intermediate is explored as the potential initiation point for the folding for three pathogenic mutants (T182A, I214V, and Q211P in mouse prion numbering) of the prion protein.
Collapse
|
6
|
Lee J, Chang I, Yu W. Atomic insights into the effects of pathological mutants through the disruption of hydrophobic core in the prion protein. Sci Rep 2019; 9:19144. [PMID: 31844149 PMCID: PMC6915724 DOI: 10.1038/s41598-019-55661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Destabilization of prion protein induces a conformational change from normal prion protein (PrPC) to abnormal prion protein (PrPSC). Hydrophobic interaction is the main driving force for protein folding, and critically affects the stability and solvability. To examine the importance of the hydrophobic core in the PrP, we chose six amino acids (V176, V180, T183, V210, I215, and Y218) that make up the hydrophobic core at the middle of the H2-H3 bundle. A few pathological mutants of these amino acids have been reported, such as V176G, V180I, T183A, V210I, I215V, and Y218N. We focused on how these pathologic mutations affect the hydrophobic core and thermostability of PrP. For this, we ran a temperature-based replica-exchange molecular dynamics (T-REMD) simulation, with a cumulative simulation time of 28 μs, for extensive ensemble sampling. From the T-REMD ensemble, we calculated the protein folding free energy difference between wild-type and mutant PrP using the thermodynamic integration (TI) method. Our results showed that pathological mutants V176G, T183A, I215V, and Y218N decrease the PrP stability. At the atomic level, we examined the change in pair-wise hydrophobic interactions from valine-valine to valine-isoleucine (and vice versa), which is induced by mutation V180I, V210I (I215V) at the 180th-210th (176th-215th) pair. Finally, we investigated the importance of the π-stacking between Y218 and F175.
Collapse
Affiliation(s)
- Juhwan Lee
- Center for Proteome Biophysics, DGIST, Daegu, 42988, Korea.
- Department of Emerging Material Sciences, DGIST, Daegu, 42988, Korea.
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
| | - Iksoo Chang
- Center for Proteome Biophysics, DGIST, Daegu, 42988, Korea
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Korea
| | - Wookyung Yu
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
7
|
Mondal B, Reddy G. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping. Biochemistry 2019; 59:114-124. [DOI: 10.1021/acs.biochem.9b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| |
Collapse
|
8
|
Sengupta I, Udgaonkar J. Monitoring site-specific conformational changes in real-time reveals a misfolding mechanism of the prion protein. eLife 2019; 8:44698. [PMID: 31232689 PMCID: PMC6590988 DOI: 10.7554/elife.44698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
During pathological aggregation, proteins undergo remarkable conformational re-arrangements to anomalously assemble into a heterogeneous collection of misfolded multimers, ranging from soluble oligomers to insoluble amyloid fibrils. Inspired by fluorescence resonance energy transfer (FRET) measurements of protein folding, an experimental strategy to study site-specific misfolding kinetics during aggregation, by effectively suppressing contributions from inter-molecular FRET, is described. Specifically, the kinetics of conformational changes across different secondary and tertiary structural segments of the mouse prion protein (moPrP) were monitored independently, after the monomeric units transformed into large oligomers OL, which subsequently disaggregated reversibly into small oligomers OS at pH 4. The sequence segments spanning helices α2 and α3 underwent a compaction during the formation of OL and elongation into β-sheets during the formation of OS. The β1-α1-β2 and α2-α3 subdomains were separated, and the helix α1 was unfolded to varying extents in both OL and OS.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Jayant Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
9
|
Yamaguchi K, Kamatari YO, Ono F, Shibata H, Fuse T, Elhelaly AE, Fukuoka M, Kimura T, Hosokawa-Muto J, Ishikawa T, Tobiume M, Takeuchi Y, Matsuyama Y, Ishibashi D, Nishida N, Kuwata K. A designer molecular chaperone against transmissible spongiform encephalopathy slows disease progression in mice and macaques. Nat Biomed Eng 2019; 3:206-219. [PMID: 30948810 DOI: 10.1038/s41551-019-0349-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that lack therapeutic solutions. Here, we show that the molecular chaperone (N,N'-([cyclohexylmethylene]di-4,1-phenylene)bis(2-[1-pyrrolidinyl]acetamide)), designed via docking simulations, molecular dynamics simulations and quantum chemical calculations, slows down the progress of TSEs. In vitro, the designer molecular chaperone stabilizes the normal cellular prion protein, eradicates prions in infected cells, prevents the formation of drug-resistant strains and directly inhibits the interaction between prions and abnormal aggregates, as shown via real-time quaking-induced conversion and in vitro conversion NMR. Weekly intraperitoneal injection of the chaperone in prion-infected mice prolonged their survival, and weekly intravenous administration of the compound in macaques infected with bovine TSE slowed down the development of neurological and psychological symptoms and reduced the concentration of disease-associated biomarkers in the animals' cerebrospinal fluid. The de novo rational design of chaperone compounds could lead to therapeutics that can bind to different prion protein strains to ameliorate the pathology of TSEs.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuji O Kamatari
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,Life Science Research Center, Gifu University, Gifu, Japan
| | - Fumiko Ono
- Faculty of Animal Crisis Management, Chiba Institute of Science, Choshi, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroaki Shibata
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Japan
| | - Takayuki Fuse
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Abdelazim Elsayed Elhelaly
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismalia, Egypt
| | - Mayuko Fukuoka
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Tsutomu Kimura
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,Department of Chemistry, Faulty of Science Division II, Tokyo University of Science, Tokyo, Japan
| | - Junji Hosokawa-Muto
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,First Department of Forsenic Science, National Research Institute of Police Science, Kashiwa, Japan
| | - Takeshi Ishikawa
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Disease, Tokyo, Japan
| | - Yoshinori Takeuchi
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Matsuyama
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuo Kuwata
- Center for Emerging Infectious Diseases, Gifu University, Gifu, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan. .,Department of Gene and Development, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
10
|
Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun (Camb) 2018; 54:6230-6242. [PMID: 29789820 DOI: 10.1039/c8cc03053g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always β-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the β-sheet rich core of the aggregates formed in vitro, to lie in the α2-α3 subdomain of the prion protein, albeit with local stabilities that vary with the type of aggregate. This feature article describes recent advances in the investigation of in vitro prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded intermediates and final aggregates.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | | |
Collapse
|
11
|
Honda R, Kuwata K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils. FASEB J 2018; 32:3641-3652. [PMID: 29401635 DOI: 10.1096/fj.201701183rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amyloid fibrils are filamentous protein aggregates associated with the pathogenesis of a wide variety of human diseases. The formation of such aggregates typically follows nucleation-dependent kinetics, wherein the assembly and structural conversion of amyloidogenic proteins into oligomeric aggregates (nuclei) is the rate-limiting step of the overall reaction. In this study, we sought to gain structural insights into the oligomeric nuclei of the human prion protein (PrP) by preparing a series of deletion mutants lacking 14-44 of the C-terminal 107 residues of PrP and examined the kinetics and thermodynamics of these mutants in amyloid formation. An analysis of the experimental data using the concepts of the Φ-value analysis indicated that the helix 2 region (residues 168-196) acquires an amyloid-like β-sheet during nucleation, whereas the other regions preserves a relatively disordered structure in the nuclei. This finding suggests that the helix 2 region serves as the nucleation site for the assembly of amyloid fibrils.-Honda, R., Kuwata, K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.
Collapse
Affiliation(s)
- Ryo Honda
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Gene and Development, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
12
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sengupta I, Bhate SH, Das R, Udgaonkar JB. Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR. J Mol Biol 2017; 429:1852-1872. [DOI: 10.1016/j.jmb.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
|
14
|
Schwarte A, Genz M, Skalden L, Nobili A, Vickers C, Melse O, Kuipers R, Joosten HJ, Stourac J, Bendl J, Black J, Haase P, Baakman C, Damborsky J, Bornscheuer U, Vriend G, Venselaar H. NewProt – a protein engineering portal. Protein Eng Des Sel 2017; 30:441-447. [DOI: 10.1093/protein/gzx024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
|
15
|
Moulick R, Udgaonkar JB. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization. J Mol Biol 2017; 429:886-899. [DOI: 10.1016/j.jmb.2017.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
|
16
|
Bergasa-Caceres F, Rabitz HA. Macromolecular Crowding Facilitates the Conformational Transition of on-Pathway Molten Globule States of the Prion Protein. J Phys Chem B 2016; 120:11093-11101. [DOI: 10.1021/acs.jpcb.6b05696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Herschel A. Rabitz
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| |
Collapse
|
17
|
Sabareesan AT, Udgaonkar JB. Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers. J Mol Biol 2016; 428:3935-3947. [PMID: 27545411 DOI: 10.1016/j.jmb.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
Abstract
Little is understood about how the intrinsically disordered N-terminal region (NTR) of the prion protein modulates its misfolding and aggregation, which lead to prion disease. In this study, two pathogenic mutations, G113V and A116V, in the palindromic region of the NTR are shown to have no effect on the structure, stability, or dynamics of native mouse prion protein (moPrP) but nevertheless accelerate misfolding and oligomerization. For wild-type moPrP, misfolding and oligomerization appear to occur concurrently, while for both mutant variants, oligomerization is shown to precede misfolding. Kinetic hydrogen-deuterium exchange-mass spectrometry experiments show that sequence segment 89-132 from the NTR becomes structured, albeit weakly, during the oligomerization of both mutant variants. Importantly, this structure formation occurs prior to structural conversion in the C-terminal domain and appears to be the reason that the formation of misfolded oligomers is accelerated by the pathogenic mutations.
Collapse
Affiliation(s)
- A T Sabareesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|
18
|
Singh J, Udgaonkar JB. Unraveling the Molecular Mechanism of pH-Induced Misfolding and Oligomerization of the Prion Protein. J Mol Biol 2016; 428:1345-1355. [PMID: 26854758 DOI: 10.1016/j.jmb.2016.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
The misfolding of the prion protein (PrP) to aggregated forms is linked to several neurodegenerative diseases. Misfolded oligomeric forms of PrP are associated with neurotoxicity and/or infectivity, but the molecular mechanism by which they form is still poorly understood. A reduction in pH is known to be a key factor that triggers misfolded oligomer formation by PrP, but the residues whose protonation is linked with misfolding remain unidentified. The structural consequences of the protonation of these residues also remain to be determined. In the current study, amino acid residues whose protonation is critical for PrP misfolding and oligomerization have been identified using site-directed mutagenesis and misfolding/oligomerization assays. It is shown that the protonation of either H186 or D201, which mimics the effects of pathogenic mutations (H186R and D201N) at both residue sites, is critically linked to the stability, misfolding and oligomerization of PrP. Hydrogen-deuterium exchange studies coupled with mass spectrometry show that the protonation of either H186 or D201 leads to the same common structural change: increased structural dynamics in helix 1 and that in the loop between helix 1 and β-strand 2. It is shown that the protonation of either of these residues is sufficient for accelerating misfolded oligomer formation, most likely because the protonation of either residue causes the same structural perturbation. Hence, the increased structural dynamics in helix 1 and that in the loop between helix 1 and β-strand 2 appear to play an early critical role in acid-induced misfolding of PrP.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|