1
|
Saha J, Ford BJ, Wang X, Boyd S, Morgan SE, Rangachari V. Sugar distributions on gangliosides guide the formation and stability of amyloid-β oligomers. Biophys Chem 2023; 300:107073. [PMID: 37413816 PMCID: PMC10529042 DOI: 10.1016/j.bpc.2023.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Aggregation of Aβ peptides is a key contributor to the etiology of Alzheimer's disease. Being intrinsically disordered, monomeric Aβ is susceptible to conformational excursions, especially in the presence of important interacting partners such as membrane lipids, to adopt specific aggregation pathways. Furthermore, components such as gangliosides in membranes and lipid rafts are known to play important roles in the adoption of pathways and the generation of discrete neurotoxic oligomers. Yet, what roles do carbohydrates on gangliosides play in this process remains unknown. Here, using GM1, GM3, and GD3 ganglioside micelles as models, we show that the sugar distributions and cationic amino acids within Aβ N-terminal region modulate oligomerization of Aβ temporally, and dictate the stability and maturation of oligomers. These results demonstrate the selectivity of sugar distributions on the membrane surface toward oligomerization of Aβ and thus implicate cell-selective enrichment of oligomers.
Collapse
Affiliation(s)
- Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, 118, College Dr Hattiesburg, MS 39402, USA
| | - Brea J Ford
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, 118, College Dr Hattiesburg, MS 39402, USA
| | | | - Sydney Boyd
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, 118, College Dr Hattiesburg, MS 39402, USA
| | | | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, 118, College Dr Hattiesburg, MS 39402, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
2
|
Saha J, Ford BJ, Boyd S, Rangachari V. Sugar distributions on gangliosides guide the formation and stability of amyloid-β oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540003. [PMID: 37214891 PMCID: PMC10197704 DOI: 10.1101/2023.05.09.540003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aggregation of Aβ peptides has been known as a key contributor to the etiology of Alzheimer's disease. Being intrinsically disordered, the monomeric Aβ is susceptible to conformational excursions, especially in the presence of key interacting partners such as membrane lipids, to adopt specific aggregation pathways. Furthermore, key components such as gangliosides in membranes and lipid rafts are known to play important roles in the adoption of pathways and the generation of discrete neurotoxic oligomers. Yet, what roles the carbohydrates on gangliosides play in this process remains unknown. Here, using GM1, GM3, and GD3 ganglioside micelles as models, we show that the sugar distributions and cationic amino acids within Aβ N-terminal region modulate oligomerization of Aβ temporally, and dictate the stability and maturation of oligomers.
Collapse
|
3
|
Reduced Expression of Voltage-Gated Sodium Channel Beta 2 Restores Neuronal Injury and Improves Cognitive Dysfunction Induced by A β1-42. Neural Plast 2022; 2022:3995227. [PMID: 36406589 PMCID: PMC9671742 DOI: 10.1155/2022/3995227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Voltage-gated sodium channel beta 2 (Nav2.2 or Navβ2, coded by SCN2B mRNA), a gene involved in maintaining normal physiological functions of the prefrontal cortex and hippocampus, might be associated with prefrontal cortex aging and memory decline. This study investigated the effects of Navβ2 in amyloid-β 1-42- (Aβ1-42-) induced neural injury model and the potential underlying molecular mechanism. The results showed that Navβ2 knockdown restored neuronal viability of Aβ1-42-induced injury in neurons; increased the contents of brain-derived neurotrophic factor (BDNF), enzyme neprilysin (NEP) protein, and NEP enzyme activity; and effectively altered the proportions of the amyloid precursor protein (APP) metabolites including Aβ42, sAPPα, and sAPPβ, thus ameliorating cognitive dysfunction. This may be achieved through regulating NEP transcription and APP metabolism, accelerating Aβ degradation, alleviating neuronal impairment, and regulating BDNF-related signal pathways to repair neuronal synaptic efficiency. This study provides novel evidence indicating that Navβ2 plays crucial roles in the repair of neuronal injury induced by Aβ1-42 both in vivo and in vitro.
Collapse
|
4
|
Das Saha N, Pradhan S, Sasmal R, Sarkar A, Berač CM, Kölsch JC, Pahwa M, Show S, Rozenholc Y, Topçu Z, Alessandrini V, Guibourdenche J, Tsatsaris V, Gagey-Eilstein N, Agasti SS. Cucurbit[7]uril Macrocyclic Sensors for Optical Fingerprinting: Predicting Protein Structural Changes to Identifying Disease-Specific Amyloid Assemblies. J Am Chem Soc 2022; 144:14363-14379. [PMID: 35913703 DOI: 10.1021/jacs.2c05969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a three-dimensional (3D) representation, each protein molecule displays a specific pattern of chemical and topological features, which are altered during its misfolding and aggregation pathway. Generating a recognizable fingerprint from such features could provide an enticing approach not only to identify these biomolecules but also to gain clues regarding their folding state and the occurrence of pathologically lethal misfolded aggregates. We report here a universal strategy to generate a fluorescent fingerprint from biomolecules by employing the pan-selective molecular recognition feature of a cucurbit[7]uril (CB[7]) macrocyclic receptor. We implemented a direct sensing strategy by covalently tethering CB[7] with a library of fluorescent reporters. When CB[7] recognizes the chemical and geometrical features of a biomolecule, it brings the tethered fluorophore into the vicinity, concomitantly reporting the nature of its binding microenvironment through a change in their optical signature. The photophysical properties of the fluorophores allow a multitude of probing modes, while their structural features provide additional binding diversity, generating a distinct fluorescence fingerprint from the biomolecule. We first used this strategy to rapidly discriminate a diverse range of protein analytes. The macrocyclic sensor was then applied to probe conformational changes in the protein structure and identify the formation of oligomeric and fibrillar species from misfolded proteins. Notably, the sensor system allowed us to differentiate between different self-assembled forms of the disease-specific amyloid-β (Aβ) aggregates and segregated them from other generic amyloid structures with a 100% identification accuracy. Ultimately, this sensor system predicted clinically relevant changes by fingerprinting serum samples from a cohort of pregnant women.
Collapse
Affiliation(s)
- Nilanjana Das Saha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Soumen Pradhan
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Aritra Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Jonas C Kölsch
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Meenakshi Pahwa
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Yves Rozenholc
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Zeki Topçu
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Vivien Alessandrini
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Jean Guibourdenche
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Vassilis Tsatsaris
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | | | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
5
|
Saha J, Dean DN, Dhakal S, Stockmal KA, Morgan SE, Dillon KD, Adamo MF, Levites Y, Rangachari V. Biophysical characteristics of lipid-induced Aβ oligomers correlate to distinctive phenotypes in transgenic mice. FASEB J 2021; 35:e21318. [PMID: 33508158 PMCID: PMC7883479 DOI: 10.1096/fj.202002025rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects cognition and memory. Recent advances have helped identify many clinical sub‐types in AD. Mounting evidence point toward structural polymorphism among fibrillar aggregates of amyloid‐β (Aβ) to being responsible for the phenotypes and clinical manifestations. In the emerging paradigm of polymorphism and prion‐like propagation of aggregates in AD, the role of low molecular weight soluble oligomers, which are long known to be the primary toxic agents, in effecting phenotypes remains inconspicuous. In this study, we present the characterization of three soluble oligomers of Aβ42, namely 14LPOs, 16LPOs, and GM1Os with discreet biophysical and biochemical properties generated using lysophosphatidyl glycerols and GM1 gangliosides. The results indicate that the oligomers share some biophysical similarities but display distinctive differences with GM1Os. Unlike the other two, GM1Os were observed to be complexed with the lipid upon isolation. It also differs mainly in detection by conformation‐sensitive dyes and conformation‐specific antibodies, temperature and enzymatic stability, and in the ability to propagate morphologically‐distinct fibrils. GM1Os also show distinguishable biochemical behavior with pronounced neuronal toxicity. Furthermore, all the oligomers induce cerebral amyloid angiopathy (CAA) and plaque burden in transgenic AD mice, which seems to be a consistent feature among all lipid‐derived oligomers, but 16LPOs and GM1Os displayed significantly higher effect than the others. These results establish a correlation between molecular features of Aβ42 oligomers and their distinguishable effects in transgenic AD mice attuned by lipid characteristics, and therefore help bridge the knowledge gap in understanding how oligomer conformers could elicit AD phenotypes.
Collapse
Affiliation(s)
- Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Dexter N Dean
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Kelli A Stockmal
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Kristy D Dillon
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Munir F Adamo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Yona Levites
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.,Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
6
|
Khatua P, Jana AK, Hansmann UHE. Effect of Lauric Acid on the Stability of Aβ 42 Oligomers. ACS OMEGA 2021; 6:5795-5804. [PMID: 33681618 PMCID: PMC7931375 DOI: 10.1021/acsomega.0c06211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
While Alzheimer's disease is correlated with the presence of Aβ fibrils in patient brains, the more likely agents are their precursors, soluble oligomers that may form pores or otherwise distort cell membranes. Using all-atom molecular dynamics simulation, we study how the presence of fatty acids such as lauric acid changes the stability of pore-forming oligomers built from three-stranded Aβ42 chains. Such a change would alter the distribution of amyloids in the fatty acid-rich brain environment and therefore could explain the lower polymorphism observed in Aβ fibrils derived from brains of patients with Alzheimer's disease. We find that lauric acid stabilizes both ring-like and barrel-shaped models, with the effect being stronger for barrel-like models than for ring-like oligomers.
Collapse
|
7
|
Ghosh P, Rana P, Rangachari V, Saha J, Steen E, Vaidya A. A game-theoretic approach to deciphering the dynamics of amyloid- β aggregation along competing pathways. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191814. [PMID: 32431878 PMCID: PMC7211858 DOI: 10.1098/rsos.191814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Aggregation of amyloid-β (Aβ) peptides is a significant event that underpins Alzheimer's disease (AD). Aβ aggregates, especially the low-molecular weight oligomers, are the primary toxic agents in AD pathogenesis. Therefore, there is increasing interest in understanding their formation and behaviour. In this paper, we use our previously established results on heterotypic interactions between Aβ and fatty acids (FAs) to investigate off-pathway aggregation under the control of FA concentrations to develop a mathematical framework that captures the mechanism. Our framework to define and simulate the competing on- and off-pathways of Aβ aggregation is based on the principles of game theory. Together with detailed simulations and biophysical experiments, our models describe the dynamics involved in the mechanisms of Aβ aggregation in the presence of FAs to adopt multiple pathways. Specifically, our reduced-order computations indicate that the emergence of off- or on-pathway aggregates are tightly controlled by a narrow set of rate constants, and one could alter such parameters to populate a particular oligomeric species. These models agree with the detailed simulations and experimental data on using FA as a heterotypic partner to modulate the temporal parameters. Predicting spatio-temporal landscape along competing pathways for a given heterotypic partner such as lipids is a first step towards simulating scenarios in which the generation of specific 'conformer strains' of Aβ could be predicted. This approach could be significant in deciphering the mechanisms of amyloid aggregation and strain generation, which are ubiquitously observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Edward Steen
- Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, USA
| | - Ashwin Vaidya
- Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
8
|
Gao Y, Yan Y, Fang Q, Zhang N, Kumar G, Zhang J, Song LJ, Yu J, Zhao L, Zhang HT, Ma CG. The Rho kinase inhibitor fasudil attenuates Aβ 1-42-induced apoptosis via the ASK1/JNK signal pathway in primary cultures of hippocampal neurons. Metab Brain Dis 2019; 34:1787-1801. [PMID: 31482248 DOI: 10.1007/s11011-019-00487-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a chronic, progressive, neurodegenerative disorder, is the most common type of dementia. Beta amyloid (Aβ) peptide aggregation and phosphorylated tau protein accumulation are considered as one of the causes for AD. Our previous studies have demonstrated the neuroprotective effect of the Rho kinase inhibitor fasudil, but the mechanism remains elucidated. In the present study, we examined the effects of fasudil on Aβ1-42 aggregation and apoptosis and identified the intracellular signaling pathways involved in these actions in primary cultures of mouse hippocampal neurons. The results showed that fasudil increased neurite outgrowth (52.84%), decreased Aβ burden (46.65%), Tau phosphorylation (96.84%), and ROCK-II expression. In addition, fasudil reversed Aβ1-42-induced decreased expression of Bcl-2 and increases in caspase-3, cleaved-PARP, phospho-JNK(Thr183/Tyr185), and phospho-ASK1(Ser966). Further, fasudil decreased mitochondrial membrane potential and intracellular calcium overload in the neurons treated with Aβ1-42. These results suggest that inhibition of Rho kinase by fasudil reverses Aβ1-42-induced neuronal apoptosis via the ASK1/JNK signal pathway, calcium ions, and mitochondrial membrane potential. Fasudil could be a drug of choice for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
- Bio-Signal technologies (HK) Limited, 9th Floor, Amtel Building,148 Des Voeux Road Central, Central, Hong Kong
| | - Jihong Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Linhu Zhao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, the Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.
| |
Collapse
|
9
|
Xi W, Vanderford EK, Liao Q, Hansmann UHE. Stability of Aβ-fibril fragments in the presence of fatty acids. Protein Sci 2019; 28:1973-1981. [PMID: 31461191 DOI: 10.1002/pro.3719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 08/22/2019] [Indexed: 11/07/2022]
Abstract
We consider the effect of lauric acid on the stability of various fibril-like assemblies of Aβ peptides. For this purpose, we have performed molecular dynamics simulations of these assemblies either in complex with lauric acid or without presence of the ligand. While we do not observe a stabilizing effect on Aβ40 -fibrils, we find that addition of lauric acid strengthens the stability of fibrils built from the triple-stranded S-shaped Aβ42 -peptides considered to be more toxic. Or results may help to understand how the specifics of the brain-environment modulate amyloid formation and propagation.
Collapse
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Elliott K Vanderford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Qinxin Liao
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
10
|
Xi W, Dean DN, Stockmal KA, Morgan SE, Hansmann UHE, Rangachari V. Large fatty acid-derived Aβ42 oligomers form ring-like assemblies. J Chem Phys 2019; 150:075101. [PMID: 30795679 DOI: 10.1063/1.5082659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As the primary toxic species in the etiology of Alzheimer disease (AD) are low molecular weight oligomers of Aβ, it is crucial to understand the structure of Aβ oligomers for gaining molecular insights into AD pathology. We have earlier demonstrated that in the presence of fatty acids, Aβ42 peptides assemble as 12-24mer oligomers. These Large Fatty Acid-derived Oligomers (LFAOs) exist predominantly as 12mers at low and as 24mers at high concentrations. The 12mers are more neurotoxic than the 24mers and undergo self-replication, while the latter propagate to morphologically distinct fibrils with succinct pathological consequences. In order to glean into their functional differences and similarities, we have determined their structures in greater detail by combining molecular dynamic simulations with biophysical measurements. We conjecture that the LFAO are made of Aβ units in an S-shaped conformation, with the 12mers forming a double-layered hexamer ring (6 × 2) while the structure of 24mers is a double-layered dodecamer ring (12 × 2). A closer inspection of the (6 × 2) and (12 × 2) structures reveals a concentration and pH dependent molecular reorganization in the assembly of 12 to 24mers, which seems to be the underlying mechanism for the observed biophysical and cellular properties of LFAOs.
Collapse
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Dexter N Dean
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Kelli A Stockmal
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| |
Collapse
|
11
|
Xu M, Zhou H, Liu Y, Sun J, Xie W, Zhao P, Liu J. Ultrasound-Excited Protoporphyrin IX-Modified Multifunctional Nanoparticles as a Strong Inhibitor of Tau Phosphorylation and β-Amyloid Aggregation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32965-32980. [PMID: 30192126 DOI: 10.1021/acsami.8b08230] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alzheimer's disease (AD) has become one of the most serious societal problems globally, with no effective treatments. Parenchymal accumulation of amyloid beta (Aβ) plaques and the formation of neurofibrillary tangles are the hallmarks of AD. Their possible interactions and synergistic effects in AD have been gradually elucidated. The failure of many clinical trials suggests that it is difficult to treat AD with a focus on a single target. Instead, multiple targets may be an important direction for AD drug research. In this study, we used protoporphyrin IX (PX)-modified oxidized mesoporous carbon nanospheres (OMCN) (PX@OMCN@PEG(OP)@RVGs) as a novel AD multifunctional nanodrug having multiple targets. The nanodrug efficiently inhibits tau phosphorylation. In addition, the use of PX with focused ultrasound triggered the production of reactive oxygen species that significantly inhibited Aβ aggregation. Both approaches notably increased the cognitive level of APP/PS1 transgenic (Tg) mice and ultimately achieved dual-target inhibition of AD. Furthermore, the safe and effective delivery of PX across the blood-brain barrier (BBB) due to modification of the RVG peptide was demonstrated in vivo and in vitro. The favorable photothermal effect of the nanoparticles improved the BBB permeability of PX@OP@RVGs under near-infrared irradiation. The results demonstrated that the novel PX@OP@RVG multifunctional nanomedicine has a dual-target treatment capability for AD and can traverse the BBB, indicating the potential for the effective treatment of AD.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Hui Zhou
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanan Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jing Sun
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Wenjie Xie
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Ping Zhao
- Department of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Jie Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
12
|
Rangachari V, Dean DN, Rana P, Vaidya A, Ghosh P. Cause and consequence of Aβ - Lipid interactions in Alzheimer disease pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1652-1662. [PMID: 29526709 PMCID: PMC6133763 DOI: 10.1016/j.bbamem.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction. The aggregation process is highly stochastic involving both homotypic (Aβ-Aβ) and heterotypic (Aβ with interacting partners) interactions. Two of the important members of interacting partners are membrane lipids and surfactants, to which Aβ shows a perpetual association. Aβ-membrane interactions have been widely investigated for more than two decades, and this research has provided a wealth of information. Although this has greatly enriched our understanding, the objective of this review is to consolidate the information from the literature that collectively showcases the unique phenomenon of lipid-mediated Aβ oligomer generation, which has largely remained inconspicuous. This is especially important because Aβ aggregate "strains" are increasingly becoming relevant in light of the correlations between the structure of aggregates and AD phenotypes. Here, we will focus on aspects of Aβ-lipid interactions specifically from the context of how lipid modulation generates a wide variety of biophysically and biochemically distinct oligomer sub-types. This, we believe, will refocus our thinking on the influence of lipids and open new approaches in delineating the mechanisms of AD pathogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Vijayaraghavan Rangachari
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Dexter N Dean
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ashwin Vaidya
- Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
13
|
Pletnikova O, Kageyama Y, Rudow G, LaClair KD, Albert M, Crain BJ, Tian J, Fowler D, Troncoso JC. The spectrum of preclinical Alzheimer's disease pathology and its modulation by ApoE genotype. Neurobiol Aging 2018; 71:72-80. [PMID: 30099348 DOI: 10.1016/j.neurobiolaging.2018.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 01/26/2023]
Abstract
Sporadic Alzheimer's disease (AD) usually presents clinically after 65 years of age, but its pathological changes begin decades earlier. We examined for AD pathology in the postmortem brains of 431 of subjects aged 30-65 years not clinically characterized. Among 40-49 year olds, 15% showed diffuse amyloid β (Aβ) plaques, with a prevalence of 80% in ApoE4/E4, 42% in E4/E3, and <1% in E3/E3 subjects. Aβ deposits appeared after age 49 years in subjects with E3/E3 genotypes. Neuritic plaques first appeared after age 50 years and increased steadily with age in all genotypes. Insoluble Aβ42 levels were highest in parietal, temporal, and frontal lobes, but barely detectable in precuneus. Tau lesions were present in the hippocampus and entorhinal cortex in 7% of subjects aged <40 years and increased steadily with age reaching near 70% in the 60- to 65-year age group. In the locus coeruleus, tau lesions were present in 72% of subjects aged 31-40 years and 94% in the 41- to 50-year age group. Both Aβ and tau lesions are present in the brains of young individuals decades before the age of clinical onset of AD. Aβ lesions closely correlate with the ApoE4 allele and appear as the earliest event in the development of senile plaques.
Collapse
Affiliation(s)
- Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yusuke Kageyama
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gay Rudow
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katherine D LaClair
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara J Crain
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jing Tian
- Biostatistics Consulting Center, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - David Fowler
- Office of the Chief Medical Examiner, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) are involved in the pathogenesis of Alzheimer's disease (AD), which is characterized by the accumulation of β-amyloid protein (Aβ) and tau hyperphosphorylation. However, the gaps in our knowledge of the roles of COX-2 and PGs in AD have not been filled. Here, we summarized the literature showing that COX-2 dysregulation obviously influences abnormal cleavage of β-amyloid precursor protein, aggregation and deposition of Aβ in β-amyloid plaques and the inclusion of phosphorylated tau in neurofibrillary tangles. Neuroinflammation, oxidative stress, synaptic plasticity, neurotoxicity, autophagy, and apoptosis have been assessed to elucidate the mechanisms of COX-2 regulation of AD. Notably, an imbalance of these factors ultimately produces cognitive decline. The current review substantiates our understanding of the mechanisms of COX-2-induced AD and establishes foundations for the design of feasible therapeutic strategies to treat AD.-Guan, P.-P., Wang, P. Integrated communications between cyclooxygenase-2 and Alzheimer's disease.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
15
|
Dean DN, Rana P, Campbell RP, Ghosh P, Rangachari V. Propagation of an Aβ Dodecamer Strain Involves a Three-Step Mechanism and a Key Intermediate. Biophys J 2018; 114:539-549. [PMID: 29414699 PMCID: PMC5985009 DOI: 10.1016/j.bpj.2017.11.3778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Proteinaceous deposits composed of fibrillar amyloid-β (Aβ) are the primary neuropathological hallmarks in Alzheimer disease (AD) brains. The nucleation-dependent aggregation of Aβ is a stochastic process with frequently observed heterogeneity in aggregate size, structure, and conformation that manifests in fibril polymorphism. Emerging evidence indicates that polymorphic variations in Aβ fibrils contribute to phenotypic diversity and the rate of disease progression in AD. We recently demonstrated that a dodecamer strain derived from synthetic Aβ42 propagates to morphologically distinct fibrils and selectively induces cerebral amyloid angiopathy phenotype in transgenic mice. This report supports the growing contention that stable oligomer strains can influence phenotypic outcomes by faithful propagation of their structures. Although we determined the mechanism of dodecamer propagation on a mesoscopic scale, the molecular details of the microscopic reactions remained unknown. Here, we have dissected and evaluated individually the kinetics of macroscopic phases in aggregation to gain insight into the process of strain propagation. The bulk rates determined experimentally in each phase were used to build an ensemble kinetic simulation model, which confirmed our observation that dodecamer seeds initially grow by monomer addition toward the formation of a key intermediate. This is followed by conversion of the intermediate to fibrils by oligomer elongation and association mechanisms. Overall, this report reveals important insights into the molecular details of oligomer strain propagation involved in AD pathology.
Collapse
Affiliation(s)
- Dexter N Dean
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi
| | - Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan P Campbell
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi.
| |
Collapse
|
16
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Rana P, Dean DN, Steen ED, Vaidya A, Rangachari V, Ghosh P. Fatty Acid Concentration and Phase Transitions Modulate Aβ Aggregation Pathways. Sci Rep 2017; 7:10370. [PMID: 28871093 PMCID: PMC5583381 DOI: 10.1038/s41598-017-09794-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023] Open
Abstract
Aggregation of amyloid β (Aβ) peptides is a significant event that underpins Alzheimer disease (AD) pathology. Aβ aggregates, especially the low-molecular weight oligomers, are the primary toxic agents in AD and hence, there is increasing interest in understanding their formation and behavior. Aggregation is a nucleation-dependent process in which the pre-nucleation events are dominated by Aβ homotypic interactions. Dynamic flux and stochasticity during pre-nucleation renders the reactions susceptible to perturbations by other molecules. In this context, we investigate the heterotypic interactions between Aβ and fatty acids (FAs) by two independent tool-sets such as reduced order modelling (ROM) and ensemble kinetic simulation (EKS). We observe that FAs influence Aβ dynamics distinctively in three broadly-defined FA concentration regimes containing non-micellar, pseudo-micellar or micellar phases. While the non-micellar phase promotes on-pathway fibrils, pseudo-micellar and micellar phases promote predominantly off-pathway oligomers, albeit via subtly different mechanisms. Importantly off-pathway oligomers saturate within a limited molecular size, and likely with a different overall conformation than those formed along the on-pathway, suggesting the generation of distinct conformeric strains of Aβ, which may have profound phenotypic outcomes. Our results validate previous experimental observations and provide insights into potential influence of biological interfaces in modulating Aβ aggregation pathways.
Collapse
Affiliation(s)
- Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Dexter N Dean
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Edward D Steen
- Department of Mathematical Science, Montclair State University, Montclair, NJ, 07043, USA
| | - Ashwin Vaidya
- Department of Mathematical Science, Montclair State University, Montclair, NJ, 07043, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
18
|
Abstract
When assembling as fibrils Aβ40 peptides can only assume U-shaped conformations while Aβ42 can also arrange as S-shaped three-stranded chains. We show that this allows Aβ42 peptides to assemble pore-like structures that may explain their higher toxicity. For this purpose, we develop a scalable model of ring-like assemblies of S-shaped Aβ1-42 chains and study the stability and structural properties of these assemblies through atomistic molecular dynamics simulations. We find that the proposed arrangements are in size and symmetry compatible with experimentally observed Aβ assemblies. We further show that the interior pore in our models allows for water leakage as a possible mechanism of cell toxicity of Aβ42 amyloids.
Collapse
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, USA.
| |
Collapse
|
19
|
Deng Y, Long L, Wang K, Zhou J, Zeng L, He L, Gong Q. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats. Front Pharmacol 2017; 8:39. [PMID: 28210222 PMCID: PMC5288340 DOI: 10.3389/fphar.2017.00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer's disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Long Long
- Department of Pharmacy, Zunyi Medical UniversityGuizhou, China
| | - Keke Wang
- Zunyi Medical and Pharmaceutical CollegeGuizhou, China
| | - Jiayin Zhou
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lingrong Zeng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lianzi He
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| |
Collapse
|
20
|
Strain-specific Fibril Propagation by an Aβ Dodecamer. Sci Rep 2017; 7:40787. [PMID: 28098204 PMCID: PMC5241678 DOI: 10.1038/srep40787] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/09/2016] [Indexed: 01/12/2023] Open
Abstract
Low molecular weight oligomers of amyloid-β (Aβ) have emerged as the primary toxic agents in the etiology of Alzheimer disease (AD). Polymorphism observed within the aggregation end products of fibrils are known to arise due to microstructural differences among the oligomers. Diversity in aggregate morphology correlates with the differences in AD, cementing the idea that conformational strains of oligomers could be significant in phenotypic outcomes. Therefore, it is imperative to determine the ability of strains to faithfully propagate their structure. Here we report fibril propagation of an Aβ42 dodecamer called large fatty acid-derived oligomers (LFAOs). The LFAO oligomeric strain selectively induces acute cerebral amyloid angiopathy (CAA) in neonatally-injected transgenic CRND8 mice. Propagation in-vitro occurs as a three-step process involving the association of LFAO units. LFAO-seeded fibrils possess distinct morphology made of repeating LFAO units that could be regenerated upon sonication. Overall, these data bring forth an important mechanistic perspective into strain-specific propagation of oligomers that has remained elusive thus far.
Collapse
|
21
|
Affiliation(s)
- Kathleen Farmer
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| | - Julia E. Gerson
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|