1
|
Saladino R, Bizzarri BM, Mauro ED. Determinism of formamide-based biogenic prebiotic reactions. Phys Life Rev 2024; 51:243-251. [PMID: 39447275 DOI: 10.1016/j.plrev.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Formamide reacted in the presence of a catalyst and of a source of energy affords a rich and complex panel of compounds, including amino acids, amino sugars, nucleic bases, nucleosides, carboxylic acids, aliphatic chains, and more. Nor the source of energy nor the type of catalyst are fastidious. All the catalysts tested have activity; each catalyst affords its own specific set of products, although the panels of products of each catalyst largely overlap. Potentially biogenic compounds form in reasonable conditions and the chemistry that determines the initial syntheses is facile. Hence, Darwins warm little pond did not rely on exotic environments nor on magic tricks. The type of molecules resulting from a mixture of formamide and of two selected products of its initial reactions hint that the initial prebiotic soup was deterministic and oriented towards life-as-we-know-it.
Collapse
Affiliation(s)
- Raffaele Saladino
- Department of Ecological and Biological Sciences, Via San Camillo De Lellis, Università della Tuscia, Viterbo 01100, Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological and Biological Sciences, Via San Camillo De Lellis, Università della Tuscia, Viterbo 01100, Italy
| | - Ernesto Di Mauro
- Department of Ecological and Biological Sciences, Via San Camillo De Lellis, Università della Tuscia, Viterbo 01100, Italy.
| |
Collapse
|
2
|
Caster KL, Seifert NA, Ruscic B, Jasper AW, Prozument K. Dynamics of HCN, HNC, and HNCO Formation in the 193 nm Photodissociation of Formamide. J Phys Chem A 2024; 128:7761-7771. [PMID: 39225655 DOI: 10.1021/acs.jpca.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Formamide (NH2CHO) is the simplest molecule containing a peptide linkage [-NH-C(═O)-], and it plays an essential role in the study of prebiotic chemistry. Exposure to UV irradiation allows formamide to decompose and act as a prebiotic feedstock in the formation of nucleobases and other necessary starting materials. The photodissociation mechanism of gaseous formamide at 193 nm is studied using (a) chirped-pulse Fourier transform millimeter-wave spectroscopy in the 260-290 GHz spectral region in a room-temperature flow-tube reactor at 1 μbar pressure, (b) a combination of electronic structure theory, transition state theory, and quasiclassical trajectories, and (c) the Active Thermochemical Tables. The HCN and HNC photoproducts of hydrogenated (NH2CHO) and deuterated (NH2CDO and ND2CHO) formamide precursors are examined to gain insight into the photodissociation mechanism. The theoretical investigation has characterized the main pathway leading to each of the HCN/HNC isomers from the precursor isotopologues. The theoretical branching ratio [HNC]/[HCN] = 2.1 for nascent photofragments agrees with the experiment. The effect of the postphotolysis HNC ↔ HCN isomerization on the [HNC]/[HCN] ratio is predicted. We report the experimental branching ratio [HNCO]: ([HNC] + [HCN]) = 12 ± 3 and propose that most of HNCO originates from dissociation on the S1 electronic state of formamide.
Collapse
Affiliation(s)
- Kacee L Caster
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nathan A Seifert
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kirill Prozument
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Omran A, Gonzalez A, Menor-Salvan C, Gaylor M, Wang J, Leszczynski J, Feng T. Serpentinization-Associated Mineral Catalysis of the Protometabolic Formose System. Life (Basel) 2023; 13:1297. [PMID: 37374080 DOI: 10.3390/life13061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The formose reaction is a plausible prebiotic chemistry, famed for its production of sugars. In this work, we demonstrate that the Cannizzaro process is the dominant process in the formose reaction under many different conditions, thus necessitating a catalyst for the formose reaction under various environmental circumstances. The investigated formose reactions produce primarily organic acids associated with metabolism, a protometabolic system, and yield very little sugar left over. This is due to many of the acids forming from the degradation and Cannizaro reactions of many of the sugars produced during the formose reaction. We also show the heterogeneous Lewis-acid-based catalysis of the formose reaction by mineral systems associated with serpentinization. The minerals that showed catalytic activity include olivine, serpentinite, and calcium, and magnesium minerals including dolomite, calcite, and our Ca/Mg-chemical gardens. In addition, computational studies were performed for the first step of the formose reaction to investigate the reaction of formaldehyde, to either form methanol and formic acid under a Cannizzaro reaction or to react to form glycolaldehyde. Here, we postulate that serpentinization is therefore the startup process necessary to kick off a simple proto metabolic system-the formose protometabolic system.
Collapse
Affiliation(s)
- Arthur Omran
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224, USA
- Department of Geosciences, University of South Florida, Tampa, FL 33620, USA
| | - Asbell Gonzalez
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224, USA
| | - Cesar Menor-Salvan
- Departmento de Biologia de Sistemas, Universidad de Alcala, 28805 Alcala de Henares, Spain
| | - Michael Gaylor
- Analytical Sciences, Small Molecules Technologies, Bayer U.S., Saint Louis, MO 63167, USA
| | - Jing Wang
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jerzy Leszczynski
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Tian Feng
- Department of Geosciences, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
4
|
Aithal A, Dagar S, Rajamani S. Metals in Prebiotic Catalysis: A Possible Evolutionary Pathway for the Emergence of Metalloproteins. ACS OMEGA 2023; 8:5197-5208. [PMID: 36816708 PMCID: PMC9933472 DOI: 10.1021/acsomega.2c07635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 06/07/2023]
Abstract
Proteinaceous catalysts found in extant biology are products of life that were potentially derived through prolonged periods of evolution. Given their complexity, it is reasonable to assume that they were not accessible to prebiotic chemistry as such. Nevertheless, the dependence of many enzymes on metal ions or metal-ligand cores suggests that catalysis relevant to biology could also be possible with just the metal centers. Given their availability on the Hadean/Archean Earth, it is fair to conjecture that metal ions could have constituted the first forms of catalysts. A slow increase of complexity that was facilitated through the provision of organic ligands and amino acids/peptides possibly allowed for further evolution and diversification, eventually demarcating them into specific functions. Herein, we summarize some key experimental developments and observations that support the possible roles of metal catalysts in shaping the origins of life. Further, we also discuss how they could have evolved into modern-day enzymes, with some suggestions for what could be the imminent next steps that researchers can pursue, to delineate the putative sequence of catalyst evolution during the early stages of life.
Collapse
Affiliation(s)
- Anuraag Aithal
- Department
of Biology, Indian Institute of Science
Education and Research, Pune, Maharashtra 411008, India
| | - Shikha Dagar
- Department
of Biology, Indian Institute of Science
Education and Research, Pune, Maharashtra 411008, India
| | - Sudha Rajamani
- Department
of Biology, Indian Institute of Science
Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
5
|
Bizzarri BM, Fanelli A, Ciprini S, Giorgi A, De Angelis M, Fioravanti R, Nencioni L, Saladino R. Multicomponent Synthesis of Diaminopurine and Guanine PNA's Analogues Active against Influenza A Virus from Prebiotic Compounds. ACS OMEGA 2022; 7:45253-45264. [PMID: 36530301 PMCID: PMC9753540 DOI: 10.1021/acsomega.2c05754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Peptide nucleic acids (PNAs) play a key role in prebiotic chemistry as a chimera between RNA and proteins. We developed an alternative synthesis of bioactive PNA's diaminopurine and guanine analogues from prebiotic compounds, such as aminomalononitrile (AMN), urea, and guanidine, using a two-step multicomponent microwave-assisted and solvent-free approach in the presence of selected amino acids. The novel derivatives showed selective inhibitory activity against influenza virus A/Puerto Rico/8/34 H1N1 encompassing the range of nanomolar activity. Derivatives decorated with the tyrosine residue showed the highest inhibitory activity against the virus.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| | - Angelica Fanelli
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| | - Stefania Ciprini
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| | - Alessandra Giorgi
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| | - Marta De Angelis
- Department
of Public Health and Infectious Diseases, Laboratory Affiliated to
Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Raoul Fioravanti
- Department
of Public Health and Infectious Diseases, Laboratory Affiliated to
Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Lucia Nencioni
- Department
of Public Health and Infectious Diseases, Laboratory Affiliated to
Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Raffaele Saladino
- Department
of Biological and Ecological Sciences, University
of Tuscia, Viterbo 01100, Italy
| |
Collapse
|
6
|
Pastorek A, Clark VHJ, Yurchenko SN, Ferus M, Civiš S. New physical insights: Formamide discharge decomposition and the role of fragments in the formation of large biomolecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121322. [PMID: 35537261 DOI: 10.1016/j.saa.2022.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
In this work we present a time-resolved FTIR spectroscopic study on kinetics of atomic and molecular species, specifically CO, CN radical, N2, HCN and CO2 generated in a glow discharge of formamide-nitrogen-water mixture in a helium buffer gas. Radicals such as NH, CH and OH have been proven to be fundamental stones of subsequent chemical reactions having a crucial role in a prebiotic synthesis of large organic molecules. This work contains three main goals. Firstly, we present our time-resolved spectra of formamide decomposition products and discuss the mechanism of collisional excitations between specific species. Secondly, according to our time resolution, we demonstrate and explain the band shape of CO's first overtone and the energy transfer between excited nitrogen and CO, present in our spectra. Lastly, we present theoretical results for the non-LTE modelling of the spectra using bi-temperature approach and a 1D harmonic Franck-Condon approach for the multi-molecule spectra of the formamide decomposition process in the 1800-5600 cm-1 spectral range.
Collapse
Affiliation(s)
- Adam Pastorek
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague 8, Czech Republic; Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 11519 Prague 1, Czech Republic
| | - Victoria H J Clark
- Faculty of Mathematics and Physical Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Sergei N Yurchenko
- Faculty of Mathematics and Physical Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Martin Ferus
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague 8, Czech Republic.
| |
Collapse
|
7
|
Amante G, Sponer JE, Sponer J, Saija F, Cassone G. A Computational Quantum-Based Perspective on the Molecular Origins of Life's Building Blocks. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1012. [PMID: 35892991 PMCID: PMC9394336 DOI: 10.3390/e24081012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022]
Abstract
The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter-including its quantum nature-under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schro¨dinger equation at different levels of approximation (i.e., density functional theory)-such as ab initio molecular dynamics-and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts. In addition, recently developed metadynamics methods coupled with first-principles simulations are here reviewed and exploited to answer to old enigmas and to propose novel scenarios in the exponentially growing research field embedding the study of the chemical origins of life.
Collapse
Affiliation(s)
- Gabriele Amante
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, Università degli Studi di Messina, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Judit E. Sponer
- Institute of Biophysics of the Czech Academy of Sciences (IBP-CAS), Kràlovopolskà 135, 61265 Brno, Czech Republic; (J.E.S.); (J.S.)
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences (IBP-CAS), Kràlovopolskà 135, 61265 Brno, Czech Republic; (J.E.S.); (J.S.)
| | - Franz Saija
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), V. le F. Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), V. le F. Stagno d’Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
8
|
Bizzarri BM, Fanelli A, Cesarini S, Saladino R. A Three‐Way Regioselective Synthesis of Amino‐Acid Decorated Imidazole, Purine and Pyrimidine Derivatives by Multicomponent Chemistry Starting from Prebiotic Diaminomaleonitrile. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bruno Mattia Bizzarri
- Universita degli Studi della Tuscia Scienze Ecologiche e Biologiche Via Camillo de Lellis snc 01100 VITERBO ITALY
| | - Angelica Fanelli
- Università degli Studi della Tuscia: Universita degli Studi della Tuscia Scienze Ecologiche e Biologiche ITALY
| | - Silvia Cesarini
- Università degli Studi della Tuscia: Universita degli Studi della Tuscia Scienze Ecologiche e Biologiche ITALY
| | - Raffaele Saladino
- Università degli Studi della Tuscia: Universita degli Studi della Tuscia Scienze Ecologiche e Biologiche ITALY
| |
Collapse
|
9
|
Getenet M, Rieder J, Kellermeier M, Kunz W, Manuel García-Ruiz J. Tubular Structures of Calcium Carbonate: Formation, Characterization, and Implications in Natural Mineral Environments. Chemistry 2021; 27:16135-16144. [PMID: 34590745 DOI: 10.1002/chem.202101417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 01/16/2023]
Abstract
Chemical gardens are self-assembled tubular precipitates formed by a combination of osmosis, buoyancy, and chemical reaction, and thought to be capable of catalyzing prebiotic condensation reactions. In many cases, the tube wall is a bilayer structure with the properties of a diaphragm and/or a membrane. The interest in silica gardens as microreactors for materials science has increased over the past decade because of their ability to create long-lasting electrochemical potential. In this study, we have grown single macroscopic tubes based on calcium carbonate and monitored their time-dependent behavior by in situ measurements of pH, ionic concentrations inside and outside the tubular membranes, and electrochemical potential differences. Furthermore, we have characterized the composition and structure of the tubular membranes by using ex situ X-ray diffraction, infrared and Raman spectroscopy, as well as scanning electron microscopy. Based on the collected data, we propose a physicochemical mechanism for the formation and ripening of these peculiar CaCO3 structures and compare the results to those of other chemical garden systems. We find that the wall of the macroscopic calcium carbonate tubes is a bilayer of texturally distinct but compositionally similar calcite showing high crystallinity. The resulting high density of the material prevents macroscopic calcium carbonate gardens from developing significant electrochemical potential differences. In the light of these observations, possible implications in materials science and prebiotic (geo)chemistry are discussed.
Collapse
Affiliation(s)
- Melese Getenet
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, Armilla, 18100, Granada, Spain
| | - Julian Rieder
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Matthias Kellermeier
- Material Physics, BASF SE, RAA/OS-B007, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, Armilla, 18100, Granada, Spain
| |
Collapse
|
10
|
Bizzarri BM, Fanelli A, Botta L, De Angelis M, Palamara AT, Nencioni L, Saladino R. Aminomalononitrile inspired prebiotic chemistry as a novel multicomponent tool for the synthesis of imidazole and purine derivatives with anti-influenza A virus activity. RSC Adv 2021; 11:30020-30029. [PMID: 35480240 PMCID: PMC9040849 DOI: 10.1039/d1ra05240c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Amino imidazole carbonitrile derivatives decorated with α-amino acid side-chains have been synthesized by a multicomponent microwave assisted reaction inspired by the prebiotic chemistry of aminomalononitrile as a tool for generating high chemical diversity. These compounds were used as annulation synthons for the preparation of 8,9-disubstituted-6,9-dihydro-1H-purin-6-ones by reaction with formic acid as a simple C-1 donor reagent. The novel heterocycles were characterized by significant activity against influenza A virus, amino imidazole carbonitrile derivatives showing the highest activity. Thus, the chemical complexity generated by prebiotic chemistry furnished a general tool for the identification of novel antiviral agents. Amino imidazole carbonitrile derivatives decorated with α-amino acid side-chains have been synthesized by a multicomponent microwave assisted reaction inspired by the prebiotic chemistry of aminomalononitrile for generating high chemical diversity.![]()
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Ecological and Biological Sciences Department (DEB), University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| | - Angelica Fanelli
- Ecological and Biological Sciences Department (DEB), University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| | - Lorenzo Botta
- Ecological and Biological Sciences Department (DEB), University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome Piazzale Aldo Moro, 5 00185 Rome Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome Piazzale Aldo Moro, 5 00185 Rome Italy .,Department of Infectious Diseases, Istituto Superiore di Sanità Viale Regina Elena, 299 00161 Rome Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome Piazzale Aldo Moro, 5 00185 Rome Italy
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB), University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| |
Collapse
|
11
|
Mollakhalili-Meybodi N, Arab M, Nematollahi A, Mousavi Khaneghah A. Prebiotic wheat bread: Technological, sensorial and nutritional perspectives and challenges. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Wang Q, Steinbock O. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2485-2493. [PMID: 33555186 DOI: 10.1021/acs.langmuir.0c03548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Thin-walled tubes that classically form when metal salts react with sodium silicate solution are known as chemical gardens. They share similarities with the porous, catalytic materials in hydrothermal vent chimneys, and both structures are exposed to steep pH gradients that, combined with thermal factors, might have provided the free energy for prebiotic chemistry on early Earth. We report temperature effects on the shape, composition, and opacity of chemical gardens. Tubes grown at high temperature are more opaque, indicating changes to the membrane structure or thickness. To study this dependence, we developed a temperature-controlled microfluidic device, which allows the formation of analogous membranes at the interface of two coflowing reactant solutions. For the case of Ni(OH)2, membranes thicken according to a diffusion-controlled mechanism. In the studied range of 10-40 °C, the effective diffusion coefficient is independent of temperature. This suggests that counteracting processes are at play (including an increased solubility) and that the opacity of chemical garden tubes arises from changes in internal morphology. The latter could be linked to experimentally observed dendritic structures within the membranes.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
13
|
Weber JM, Barge LM. Iron‐Silicate Chemical Garden Morphology and Silicate Reactivity with Alpha‐Keto Acids. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jessica M. Weber
- NASA Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena CA, 91109 USA
| | - Laura M. Barge
- NASA Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena CA, 91109 USA
| |
Collapse
|
14
|
Spanoudaki D, Brau F, De Wit A. Oscillatory budding dynamics of a chemical garden within a co-flow of reactants. Phys Chem Chem Phys 2021; 23:1684-1693. [PMID: 33416815 DOI: 10.1039/d0cp05668e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oscillatory growth of chemical gardens is studied experimentally in the budding regime using a co-flow of two reactant solutions within a microfluidic reactor. The confined environment of the reactor tames the erratic budding growth and the oscillations leave their imprint with the formation of orderly spaced membranes on the precipitate surface. The average wavelength of the spacing between membranes, the growth velocity of the chemical garden and the oscillations period are measured as a function of the velocity of each reactant. By means of materials characterization techniques, the micro-morphology and the chemical composition of the precipitate are explored. A mathematical model is developed to explain the periodic rupture of droplets delimitated by a shell of precipitate and growing when one reactant is injected into the other. The predictions of this model are in good agreement with the experimental data.
Collapse
Affiliation(s)
- D Spanoudaki
- Université libre de Bruxelles (ULB), Faculté des Sciences, Non Linear Physical Chemistry Unit, C. P. 231, 1050 Brussels, Belgium.
| | - Fabian Brau
- Université libre de Bruxelles (ULB), Faculté des Sciences, Non Linear Physical Chemistry Unit, C. P. 231, 1050 Brussels, Belgium.
| | - A De Wit
- Université libre de Bruxelles (ULB), Faculté des Sciences, Non Linear Physical Chemistry Unit, C. P. 231, 1050 Brussels, Belgium.
| |
Collapse
|
15
|
Bizzarri BM, Saladino R, Delfino I, García-Ruiz JM, Di Mauro E. Prebiotic Organic Chemistry of Formamide and the Origin of Life in Planetary Conditions: What We Know and What Is the Future. Int J Mol Sci 2021; 22:ijms22020917. [PMID: 33477625 PMCID: PMC7831497 DOI: 10.3390/ijms22020917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of prebiotic chemistry is the depiction of molecular evolution events preceding the emergence of life on Earth or elsewhere in the cosmos. Plausible experimental models require geochemical scenarios and robust chemistry. Today we know that the chemical and physical conditions for life to flourish on Earth were at work much earlier than thought, i.e., earlier than 4.4 billion years ago. In recent years, a geochemical model for the first five hundred million years of the history of our planet has been devised that would work as a cradle for life. Serpentinization processes in the Hadean eon affording self-assembled structures and vesicles provides the link between the catalytic properties of the inorganic environment and the impressive chemical potential of formamide to produce complete panels of organic molecules relevant in pre-genetic and pre-metabolic processes. Based on an interdisciplinary approach, we propose basic transformations connecting geochemistry to the chemistry of formamide, and we hint at the possible extension of this perspective to other worlds.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (B.M.B.); (I.D.); (E.D.M.)
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (B.M.B.); (I.D.); (E.D.M.)
- Correspondence: (R.S.); (J.M.G.-R.)
| | - Ines Delfino
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (B.M.B.); (I.D.); (E.D.M.)
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas–Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
- Correspondence: (R.S.); (J.M.G.-R.)
| | - Ernesto Di Mauro
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (B.M.B.); (I.D.); (E.D.M.)
| |
Collapse
|
16
|
Kotopoulou E, Lopez‐Haro M, Calvino Gamez JJ, García‐Ruiz JM. Nanoscale Anatomy of Iron-Silica Self-Organized Membranes: Implications for Prebiotic Chemistry. Angew Chem Int Ed Engl 2021; 60:1396-1402. [PMID: 33022871 PMCID: PMC7839773 DOI: 10.1002/anie.202012059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Iron-silica self-organized membranes, so-called chemical gardens, behave as fuel cells and catalyze the formation of amino/carboxylic acids and RNA nucleobases from organics that were available on early Earth. Despite their relevance for prebiotic chemistry, little is known about their structure and mineralogy at the nanoscale. Studied here are focused ion beam milled sections of iron-silica membranes, grown from synthetic and natural, alkaline, serpentinization-derived fluids thought to be widespread on early Earth. Electron microscopy shows they comprise amorphous silica and iron nanoparticles of large surface areas and inter/intraparticle porosities. Their construction resembles that of a heterogeneous catalyst, but they can also exhibit a bilayer structure. Surface-area measurements suggest that membranes grown from natural waters have even higher catalytic potential. Considering their geochemically plausible precipitation in the early hydrothermal systems where abiotic organics were produced, iron-silica membranes might have assisted the generation and organization of the first biologically relevant organics.
Collapse
Affiliation(s)
- Electra Kotopoulou
- Instituto Andaluz de Ciencias de la TierraConsejo Superior de Investigaciones Científicas- Universidad de GranadaAvda. de las Palmeras 418100GranadaSpain
| | - Miguel Lopez‐Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de CienciasUniversidad de CadizCampus Rio San PedroPuerto Real11510CádizSpain
| | - Jose Juan Calvino Gamez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química InorgánicaFacultad de CienciasUniversidad de CadizCampus Rio San PedroPuerto Real11510CádizSpain
| | - Juan Manuel García‐Ruiz
- Instituto Andaluz de Ciencias de la TierraConsejo Superior de Investigaciones Científicas- Universidad de GranadaAvda. de las Palmeras 418100GranadaSpain
| |
Collapse
|
17
|
Navrotsky A, Hervig R, Lyons J, Seo DK, Shock E, Voskanyan A. Cooperative formation of porous silica and peptides on the prebiotic Earth. Proc Natl Acad Sci U S A 2021; 118:e2021117118. [PMID: 33376204 PMCID: PMC7812765 DOI: 10.1073/pnas.2021117118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modern technology has perfected the synthesis of catalysts such as zeolites and mesoporous silicas using organic structure directing agents (SDA) and their industrial use to catalyze a large variety of organic reactions within their pores. We suggest that early in prebiotic evolution, synergistic interplay arose between organic species in aqueous solution and silica formed from rocks by dynamic dissolution-recrystallization. The natural organics, for example, amino acids, small peptides, and fatty acids, acted as SDA for assembly of functional porous silica structures that induced further polymerization of amino acids and peptides, as well as other organic reactions. Positive feedback between synthesis and catalysis in the silica-organic system may have accelerated the early stages of abiotic evolution by increasing the formation of polymerized species.
Collapse
Affiliation(s)
- Alexandra Navrotsky
- Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287;
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287
| | - Richard Hervig
- Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - James Lyons
- Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Dong-Kyun Seo
- Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Everett Shock
- Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Albert Voskanyan
- Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
18
|
Angelis G, Kordopati GG, Zingkou E, Karioti A, Sotiropoulou G, Pampalakis G. Plausible Emergence of Biochemistry in Enceladus Based on Chemobrionics. Chemistry 2021; 27:600-604. [PMID: 33108005 DOI: 10.1002/chem.202004018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/18/2020] [Indexed: 11/11/2022]
Abstract
Saturn's satellite Enceladus is proposed to have a soda-type subsurface ocean with temperature able to support life and an iron ore-based core. Here, it was demonstrated that ocean chemistry related to Enceladus can support the development of Fe-based hydrothermal vents, one of the places suggested to be the cradle of life. The Fe-based chemical gardens were characterized with Fourier-transform (FT)IR spectroscopy and XRD. The developed chemobrionic structures catalyzed the condensation polymerization of simple organic prebiotic molecules to kerogens. Further, they could passively catalyze the condensation of the prebiotic molecule formamide to larger polymers, suggesting that elementary biochemical precursors could have emerged in Enceladus.
Collapse
Affiliation(s)
- Georgios Angelis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Golfo G Kordopati
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Rion-Patras, Greece
| | - Anastasia Karioti
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
19
|
Prebiotic chemistry and origins of life research with atomistic computer simulations. Phys Life Rev 2020; 34-35:105-135. [DOI: 10.1016/j.plrev.2018.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/02/2023]
|
20
|
Kotopoulou E, Lopez‐Haro M, Calvino Gamez JJ, García‐Ruiz JM. Nanoscale Anatomy of Iron‐Silica Self‐Organized Membranes: Implications for Prebiotic Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Electra Kotopoulou
- Instituto Andaluz de Ciencias de la Tierra Consejo Superior de Investigaciones Científicas- Universidad de Granada Avda. de las Palmeras 4 18100 Granada Spain
| | - Miguel Lopez‐Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica Facultad de Ciencias Universidad de Cadiz Campus Rio San Pedro Puerto Real 11510 Cádiz Spain
| | - Jose Juan Calvino Gamez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica Facultad de Ciencias Universidad de Cadiz Campus Rio San Pedro Puerto Real 11510 Cádiz Spain
| | - Juan Manuel García‐Ruiz
- Instituto Andaluz de Ciencias de la Tierra Consejo Superior de Investigaciones Científicas- Universidad de Granada Avda. de las Palmeras 4 18100 Granada Spain
| |
Collapse
|
21
|
Bizzarri BM, Manini P, Lino V, d'Ischia M, Kapralov M, Krasavin E, Mráziková K, Šponer J, Šponer JE, Di Mauro E, Saladino R. High‐Energy Proton‐Beam‐Induced Polymerization/Oxygenation of Hydroxynaphthalenes on Meteorites and Nitrogen Transfer from Urea: Modeling Insoluble Organic Matter? Chemistry 2020; 26:14919-14928. [DOI: 10.1002/chem.202002318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/06/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Bruno Mattia Bizzarri
- Ecological and Biological Sciences Department (DEB) University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| | - Paola Manini
- Department of Chemical Sciences University of Naples Federico II Campus Monte S. Angelo Via Cinthia 21 80126 Naples Italy
| | - Valeria Lino
- Department of Chemical Sciences University of Naples Federico II Campus Monte S. Angelo Via Cinthia 21 80126 Naples Italy
| | - Marco d'Ischia
- Department of Chemical Sciences University of Naples Federico II Campus Monte S. Angelo Via Cinthia 21 80126 Naples Italy
| | - Michail Kapralov
- Joint Institute for Nuclear Research JINR's Laboratory of Radiation Biology Dubna Russia
| | - Eugene Krasavin
- Joint Institute for Nuclear Research JINR's Laboratory of Radiation Biology Dubna Russia
| | - Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
| | - Judit E. Šponer
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
| | - Ernesto Di Mauro
- Ecological and Biological Sciences Department (DEB) University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB) University of Tuscia Via S. Camillo de Lellis snc 01100 Viterbo Italy
| |
Collapse
|
22
|
Pastorek A, Ferus M, Čuba V, Šrámek O, Ivanek O, Civiš S. Primordial Radioactivity and Prebiotic Chemical Evolution: Effect of γ Radiation on Formamide-Based Synthesis. J Phys Chem B 2020; 124:8951-8959. [PMID: 32970439 DOI: 10.1021/acs.jpcb.0c05233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the effect of ionizing radiation on prebiotic chemistry is often overlooked, primordial natural radioactivity might have been an important source of energy for various chemical transformations. Estimates of the abundances of short-lived radionuclides on early Earth suggest that the primordial intensity of endogenous terrestrial radioactivity was up to 4 × 103 times higher than it is today. Therefore, we assume that chemical substances in contact with radioactive rocks should therefore undergo radiolysis. The calculations are followed by research investigating the influence of ionizing γ radiation on basic prebiotic substances, including formamide mixed with various clays, which might have played the role of a catalyst and an agent that partially blocked radiation that was potentially destructive for the products. Our explorations of this effect have shown that the irradiation of formamide-clay mixtures at doses of ∼6 kGy produces significant amounts of urea (up to the maximal concentration of approximately 250 mg L-1), which plays a role in HCN-based prebiotic chemistry.
Collapse
Affiliation(s)
- Adam Pastorek
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague, Prague 8, Czech Republic.,Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 11519 Prague, Prague 1, Czech Republic
| | - Martin Ferus
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague, Prague 8, Czech Republic
| | - Václav Čuba
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 11519 Prague, Prague 1, Czech Republic
| | - Ondřej Šrámek
- Department of Geophysics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Prague 8, Czech Republic
| | - Ondřej Ivanek
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague, Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 18200 Prague, Prague 8, Czech Republic
| |
Collapse
|
23
|
Zissi GD, Angelis G, Pampalakis G. The Generation and Study of a Gold‐Based Chemobrionic Plant‐Like Structure. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Georgia D. Zissi
- Department of Pharmacy University of Patras Panepistimioupolis, Rion Patras 26504 Greece
| | - George Angelis
- Department of Pharmacognosy-Pharmacology Aristotle University Thessaloniki Thessaloniki 54124 Greece
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology Aristotle University Thessaloniki Thessaloniki 54124 Greece
| |
Collapse
|
24
|
Formic acid, the precursor of formamide, from serpentinization: Comment on the paper: "Mineral self-organization on a lifeless planet" by Juan Manuel García-Ruiz, Mark A. van Zuilen and Wolfgang Bach. Phys Life Rev 2020; 34-35:94-95. [PMID: 32586715 DOI: 10.1016/j.plrev.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022]
|
25
|
Hooks MR, Webster P, Weber JM, Perl S, Barge LM. Effects of Amino Acids on Iron-Silicate Chemical Garden Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5793-5801. [PMID: 32421344 DOI: 10.1021/acs.langmuir.0c00502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Understanding the structure and behavior of chemical gardens is of interest for materials science, for understanding organic-mineral interactions, and for simulating geological mineral structures in hydrothermal systems on Earth and other worlds. Herein, we explored the effects of amino acids on inorganic chemical garden precipitate systems of iron chloride and sodium silicate to determine if/how the addition of organics can affect self-assembling morphologies or crystal growth. Amino acids affect chemical garden growth and morphology at the macro-scale and at the nanoscale. In this reaction system, the concentration of amino acid had a greater impact than the amino acid side chain, and increasing concentrations of organics caused structures to have smoother exteriors as amino acids accumulated on the outside surface. These results provide an example of how organic compounds can become incorporated into and influence the growth of inorganic self-organizing precipitates in far-from-equilibrium systems. Additionally, sample handing methods were developed to successfully image these delicate structures.
Collapse
Affiliation(s)
- Michelle R Hooks
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Paul Webster
- Oak Crest Institute of Science, 132 W Chestnut Ave, Monrovia, California 91016, United States
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Scott Perl
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| |
Collapse
|
26
|
Vago JL, Westall F. Similarities between terrestrial planets at the time life appeared on Earth: Comment on "Mineral self-organization on a lifeless planet" by J.M. García-Ruiz et al. Phys Life Rev 2020; 34-35:92-93. [PMID: 32467038 DOI: 10.1016/j.plrev.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Jorge L Vago
- European Space Agency, ESTEC, Keplerlaan 1, Noordwijk, the Netherlands.
| | - Frances Westall
- CNRS-OSUC-Centre de Biophysique Moléculaire, Orléans, France
| |
Collapse
|
27
|
Pantaleone S, Salvini C, Zamirri L, Signorile M, Bonino F, Ugliengo P. A quantum mechanical study of dehydration vs. decarbonylation of formamide catalysed by amorphous silica surfaces. Phys Chem Chem Phys 2020; 22:8353-8363. [PMID: 32266913 DOI: 10.1039/d0cp00572j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Formamide is abundant in the interstellar medium and was also present during the formation of the Solar system through the accretion process of interstellar dust. Under the physicochemical conditions of primordial Earth, formamide could have undergone decomposition, either via dehydration (HCN + H2O) or via decarbonylation (CO + NH3). The first reactive channel provides HCN, which is an essential molecular building block for the formation of RNA/DNA bases, crucial for the emergence of life on Earth. In this work, we studied, at the CCSD(T)/cc-pVTZ level, the two competitive routes of formamide decomposition, i.e. dehydration and decarbonylation, either in liquid formamide (by using the polarization continuum model technique) or at the interface between liquid formamide and amorphous silica. Amorphous silica was adopted as a convenient model of the crystalline silica phases ubiquitously present in the primordial (and actual) Earth's crust, and also due to its relevance in catalysis, adsorption and chromatography. Results show that: (i) silica surface sites catalyse both decomposition channels by reducing the activation barriers by about 100 kJ mol-1 with respect to the reactions in homogeneous medium, and (ii) the dehydration channel, giving rise to HCN, is strongly favoured from a kinetic standpoint over decarbonylation, the latter being, instead, slightly favoured from a thermodynamic point of view.
Collapse
Affiliation(s)
- Stefano Pantaleone
- Univ. Grenoble Alpes, CNRS, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), 38000 Grenoble, France.
| | - Clara Salvini
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, IT-10125, Torino, Italy.
| | - Lorenzo Zamirri
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, IT-10125, Torino, Italy.
| | - Matteo Signorile
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, IT-10125, Torino, Italy.
| | - Francesca Bonino
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, IT-10125, Torino, Italy.
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, via P. Giuria 7, IT-10125, Torino, Italy.
| |
Collapse
|
28
|
García-Ruiz JM, van Zuilen MA, Bach W. Mineral self-organization on a lifeless planet. Phys Life Rev 2020; 34-35:62-82. [PMID: 32303465 DOI: 10.1016/j.plrev.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023]
Abstract
It has been experimentally demonstrated that, under alkaline conditions, silica is able to induce the formation of mineral self-assembled inorganic-inorganic composite materials similar in morphology, texture and nanostructure to the hybrid biomineral structures that, millions of years later, life was able to self-organize. These mineral self-organized structures (MISOS) have been also shown to work as effective catalysts for prebiotic chemical reactions and to easily create compartmentalization within the solutions where they form. We reason that, during the very earliest history of this planet, there was a geochemical scenario that inevitably led to the existence of a large-scale factory of simple and complex organic compounds, many of which were relevant to prebiotic chemistry. The factory was built on a silica-rich high-pH ocean and powered by two main factors: a) a quasi-infinite source of simple carbon molecules synthesized abiotically from reactions associated with serpentinization, or transported from meteorites and produced from their impact on that alkaline ocean, and b) the formation of self-organized silica-metal mineral composites that catalyze the condensation of simple molecules in a methane-rich reduced atmosphere. We discuss the plausibility of this geochemical scenario, review the details of the formation of MISOS and its catalytic properties and the transition towards a slightly alkaline to neutral ocean.
Collapse
Affiliation(s)
- Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. de las Palmeras 4, Armilla (Granada), Spain.
| | - Mark A van Zuilen
- Equipe Géomicrobiologie, Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France.
| | - Wolfgang Bach
- Geoscience Department and MARUM, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany.
| |
Collapse
|
29
|
Wang Q, Steinbock O. Materials Synthesis and Catalysis in Microfluidic Devices: Prebiotic Chemistry in Mineral Membranes. ChemCatChem 2019. [DOI: 10.1002/cctc.201901495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and BiochemistryFlorida State University 102 Varsity Drive Tallahassee FL 32306-4390 USA
| | - Oliver Steinbock
- Department of Chemistry and BiochemistryFlorida State University 102 Varsity Drive Tallahassee FL 32306-4390 USA
| |
Collapse
|
30
|
Angelis G, Zayed DN, Karioti A, Lazari D, Kanata E, Sklaviadis T, Pampalakis G. A Closed Chemobrionic System as a Biochemical Delivery Platform. Chemistry 2019; 25:12916-12919. [DOI: 10.1002/chem.201903255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Georgios Angelis
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Dimitris Nabil Zayed
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Anastasia Karioti
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Diamanto Lazari
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Eirini Kanata
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Theodoros Sklaviadis
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Georgios Pampalakis
- Department of Pharmacognosy-PharmacologySchool of PharmacyAristotle University of Thessaloniki Thessaloniki 54124 Greece
| |
Collapse
|
31
|
d'Ischia M, Manini P, Moracci M, Saladino R, Ball V, Thissen H, Evans RA, Puzzarini C, Barone V. Astrochemistry and Astrobiology: Materials Sciencein Wonderland? Int J Mol Sci 2019; 20:E4079. [PMID: 31438518 PMCID: PMC6747172 DOI: 10.3390/ijms20174079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/04/2023] Open
Abstract
Astrochemistry and astrobiology, the fascinating disciplines that strive to unravel the origin of life, have opened unprecedented and unpredicted vistas into exotic compounds as well as extreme or complex reaction conditions of potential relevance for a broad variety of applications. Representative, and so far little explored sources of inspiration include complex organic systems, such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives; hydrogen cyanide (HCN) and formamide (HCONH2) oligomers and polymers, like aminomalononitrile (AMN)-derived species; and exotic processes, such as solid-state photoreactions on mineral surfaces, phosphorylation by minerals, cold ice irradiation and proton bombardment, and thermal transformations in fumaroles. In addition, meteorites and minerals like forsterite, which dominate dust chemistry in the interstellar medium, may open new avenues for the discovery of innovative catalytic processes and unconventional methodologies. The aim of this review was to offer concise and inspiring, rather than comprehensive, examples of astrochemistry-related materials and systems that may be of relevance in areas such as surface functionalization, nanostructures, and hybrid material design, and for innovative technological solutions. The potential of computational methods to predict new properties from spectroscopic data and to assess plausible reaction pathways on both kinetic and thermodynamic grounds has also been highlighted.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Naples, Italy.
| | - Paola Manini
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Naples, Italy
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, Via S. Camillo de Lellis, University of Tuscia, 01100 Viterbo, Italy
| | - Vincent Ball
- Institut National de la Santé et de la RechercheMédicale, 11 rue Humann, 67085 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 1 Place de l'Hôpital, 67000 Strasbourg, France
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3168, Australia
| | - Richard A Evans
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC 3168, Australia
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
32
|
Dalai P, Sahai N. Mineral–Lipid Interactions in the Origins of Life. Trends Biochem Sci 2019; 44:331-341. [DOI: 10.1016/j.tibs.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
33
|
Affiliation(s)
- Georgios Pampalakis
- Department of PharmacyAristotle University of Thessaloniki Thessaloniki 54124
| |
Collapse
|
34
|
Saladino R, Di Mauro E, García‐Ruiz JM. A Universal Geochemical Scenario for Formamide Condensation and Prebiotic Chemistry. Chemistry 2019; 25:3181-3189. [PMID: 30230056 PMCID: PMC6470889 DOI: 10.1002/chem.201803889] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Indexed: 11/06/2022]
Abstract
The condensation of formamide has been shown to be a robust chemical pathway affording molecules necessary for the origin of life. It has been experimentally demonstrated that condensation reactions of formamide are catalyzed by a number of minerals, including silicates, phosphates, sulfides, zirconia, and borates, and by cosmic dusts and meteorites. However, a critical discussion of the catalytic power of the tested minerals, and the geochemical conditions under which the condensation would occur, is still missing. We show here that mineral self-assembled structures forming under alkaline silica-rich solutions are excellent catalysts for the condensation of formamide with respect to other minerals. We also propose that these structures were likely forming as early as 4.4 billion years ago when the whole earth surface was a reactor, a global scale factory, releasing large amounts of organic compounds. Our experimental results suggest that the conditions required for the synthesis of the molecular bricks from which life self-assembles, rather than being local and bizarre, appears to be universal and geologically rather conventional.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Scienze Ecologiche e BiologicheUniversità della TusciaVia San Camillo De Lellis01100ViterboItaly
| | - Ernesto Di Mauro
- Dipartimento di Scienze Ecologiche e BiologicheUniversità della TusciaVia San Camillo De Lellis01100ViterboItaly
| | - Juan Manuel García‐Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaAv. De las Palmeras 4ArmillaGranadaSpain
| |
Collapse
|
35
|
Signorile M, Salvini C, Zamirri L, Bonino F, Martra G, Sodupe M, Ugliengo P. Formamide Adsorption at the Amorphous Silica Surface: A Combined Experimental and Computational Approach. Life (Basel) 2018; 8:life8040042. [PMID: 30249032 PMCID: PMC6316577 DOI: 10.3390/life8040042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
Abstract
Mineral surfaces have been demonstrated to play a central role in prebiotic reactions, which are understood to be at the basis of the origin of life. Among the various molecules proposed as precursors for these reactions, one of the most interesting is formamide. Formamide has been shown to be a pluripotent molecule, generating a wide distribution of relevant prebiotic products. In particular, the outcomes of its reactivity are strongly related to the presence of mineral phases acting as catalysts toward specific reaction pathways. While the mineral–products relationship has been deeply studied for a large pool of materials, the fundamental description of formamide reactivity over mineral surfaces at a microscopic level is missing in the literature. In particular, a key step of formamide chemistry at surfaces is adsorption on available interaction sites. This report aims to investigate the adsorption of formamide over a well-defined amorphous silica, chosen as a model mineral surface. An experimental IR investigation of formamide adsorption was carried out and its outcomes were interpreted on the basis of first principles simulation of the process, adopting a realistic model of amorphous silica.
Collapse
Affiliation(s)
- Matteo Signorile
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7 - 10125 Torino and Via G. Quarello 15/A - 10135 Torino, Italy.
| | - Clara Salvini
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7 - 10125 Torino and Via G. Quarello 15/A - 10135 Torino, Italy.
| | - Lorenzo Zamirri
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7 - 10125 Torino and Via G. Quarello 15/A - 10135 Torino, Italy.
| | - Francesca Bonino
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7 - 10125 Torino and Via G. Quarello 15/A - 10135 Torino, Italy.
| | - Gianmario Martra
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7 - 10125 Torino and Via G. Quarello 15/A - 10135 Torino, Italy.
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalogna, Spain.
| | - Piero Ugliengo
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7 - 10125 Torino and Via G. Quarello 15/A - 10135 Torino, Italy.
| |
Collapse
|
36
|
Nakashima S, Kebukawa Y, Kitadai N, Igisu M, Matsuoka N. Geochemistry and the Origin of Life: From Extraterrestrial Processes, Chemical Evolution on Earth, Fossilized Life's Records, to Natures of the Extant Life. Life (Basel) 2018; 8:E39. [PMID: 30241342 PMCID: PMC6315873 DOI: 10.3390/life8040039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
In 2001, the first author (S.N.) led the publication of a book entitled "Geochemistry and the origin of life" in collaboration with Dr. Andre Brack aiming to figure out geo- and astro-chemical processes essential for the emergence of life. Since then, a great number of research progress has been achieved in the relevant topics from our group and others, ranging from the extraterrestrial inputs of life's building blocks, the chemical evolution on Earth with the aid of mineral catalysts, to the fossilized records of ancient microorganisms. Here, in addition to summarizing these findings for the origin and early evolution of life, we propose a new hypothesis for the generation and co-evolution of photosynthesis with the redox and photochemical conditions on the Earth's surface. Besides these bottom-up approaches, we introduce an experimental study on the role of water molecules in the life's function, focusing on the transition from live, dormant, and dead states through dehydration/hydration. Further spectroscopic studies on the hydrogen bonding behaviors of water molecules in living cells will provide important clues to solve the complex nature of life.
Collapse
Affiliation(s)
- Satoru Nakashima
- Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
- Undergraduate School of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Yoko Kebukawa
- Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Motoko Igisu
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237-0061, Japan.
| | - Natsuki Matsuoka
- Undergraduate School of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
37
|
Chemomimesis and Molecular Darwinism in Action: From Abiotic Generation of Nucleobases to Nucleosides and RNA. Life (Basel) 2018; 8:life8020024. [PMID: 29925796 PMCID: PMC6027154 DOI: 10.3390/life8020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023] Open
Abstract
Molecular Darwinian evolution is an intrinsic property of reacting pools of molecules resulting in the adaptation of the system to changing conditions. It has no a priori aim. From the point of view of the origin of life, Darwinian selection behavior, when spontaneously emerging in the ensembles of molecules composing prebiotic pools, initiates subsequent evolution of increasingly complex and innovative chemical information. On the conservation side, it is a posteriori observed that numerous biological processes are based on prebiotically promptly made compounds, as proposed by the concept of Chemomimesis. Molecular Darwinian evolution and Chemomimesis are principles acting in balanced cooperation in the frame of Systems Chemistry. The one-pot synthesis of nucleosides in radical chemistry conditions is possibly a telling example of the operation of these principles. Other indications of similar cases of molecular evolution can be found among biogenic processes.
Collapse
|
38
|
Cassone G, Šponer J, Saija F, Di Mauro E, Marco Saitta A, Šponer JE. Stability of 2',3' and 3',5' cyclic nucleotides in formamide and in water: a theoretical insight into the factors controlling the accumulation of nucleic acid building blocks in a prebiotic pool. Phys Chem Chem Phys 2018; 19:1817-1825. [PMID: 28000820 DOI: 10.1039/c6cp07993h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthesis of the first RNAs represents one of the cornerstones of the emergence of life. Recent studies demonstrated powerful scenarios of prebiotic synthesis of cyclic nucleotides in aqueous and formamide environments. This raised a question about their thermodynamic stability, a decisive factor determining their accumulation in a prebiotic pool. Here we performed ab initio molecular dynamics simulations at various temperatures in formamide and water to study the relative stabilities of the 2',3' and 3',5' isomers of cyclic nucleotides. The computations show that in an aqueous environment 2',3' cyclic nucleotides are more stable than their 3',5' counterparts at all temperatures up to the boiling point. In contrast, in formamide higher temperatures favor the accumulation of the 3',5' cyclic form, whereas below about 400 K the 2',3' cyclic form becomes more stable. The latter observation is consistent with a formamide-based origin scenario, suggesting that 3',5' cyclic nucleotides accumulated at higher temperatures subsequently allowed oligomerization reactions after fast cooling to lower temperatures. A statistical analysis of the geometrical parameters of the solutes indicates that thermodynamics of cyclic nucleotides in aqueous and formamide environments are dictated by the floppiness of the molecules rather than by the ring strain of the cyclic phosphodiester linkages.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu, 1192/12, 771 46 Olomouc, Czech Republic
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Ernesto Di Mauro
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | - A Marco Saitta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| |
Collapse
|
39
|
Mattia Bizzarri B, Botta L, Pérez-Valverde MI, Saladino R, Di Mauro E, García-Ruiz JM. Silica Metal Oxide Vesicles Catalyze Comprehensive Prebiotic Chemistry. Chemistry 2018; 24:8126-8132. [PMID: 29603465 DOI: 10.1002/chem.201706162] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 02/01/2023]
Abstract
It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2 CHO), a single-carbon molecule, at 80 °C. We found that these bilayer membranes, made of amorphous silica and metal oxide/hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three amino acids and, several carboxylic acids in a single-pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, occurred earlier than ever thought for our planet.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Lorenzo Botta
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Maritza Iveth Pérez-Valverde
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la, Tierra, Consejo Superior de Investigaciones Científicas-Universidad de, Granada, Avenida de las Palmeras 4, Armilla, Granada, 18100, Spain
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Ernesto Di Mauro
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la, Tierra, Consejo Superior de Investigaciones Científicas-Universidad de, Granada, Avenida de las Palmeras 4, Armilla, Granada, 18100, Spain
| |
Collapse
|
40
|
Saladino R, Botta L, Di Mauro E. The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes. Life (Basel) 2018; 8:life8010006. [PMID: 29470412 PMCID: PMC5871938 DOI: 10.3390/life8010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/26/2018] [Accepted: 02/18/2018] [Indexed: 01/03/2023] Open
Abstract
Meteorites are consensually considered to be involved in the origin of life on this Planet for several functions and at different levels: (i) as providers of impact energy during their passage through the atmosphere; (ii) as agents of geodynamics, intended both as starters of the Earth’s tectonics and as activators of local hydrothermal systems upon their fall; (iii) as sources of organic materials, at varying levels of limited complexity; and (iv) as catalysts. The consensus about the relevance of these functions differs. We focus on the catalytic activities of the various types of meteorites in reactions relevant for prebiotic chemistry. Formamide was selected as the chemical precursor and various sources of energy were analyzed. The results show that all the meteorites and all the different energy sources tested actively afford complex mixtures of biologically-relevant compounds, indicating the robustness of the formamide-based prebiotic chemistry involved. Although in some cases the yields of products are quite small, the diversity of the detected compounds of biochemical significance underlines the prebiotic importance of meteorite-catalyzed condensation of formamide.
Collapse
Affiliation(s)
- Raffaele Saladino
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| | - Lorenzo Botta
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| | - Ernesto Di Mauro
- Biological and Ecological Department, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
41
|
Adam ZR, Hongo Y, Cleaves HJ, Yi R, Fahrenbach AC, Yoda I, Aono M. Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci Rep 2018; 8:265. [PMID: 29321594 PMCID: PMC5762809 DOI: 10.1038/s41598-017-18483-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Water creates special problems for prebiotic chemistry, as it is thermodynamically favorable for amide and phosphodiester bonds to hydrolyze. The availability of alternative solvents with more favorable properties for the formation of prebiotic molecules on the early Earth may have helped bypass this so-called "water paradox". Formamide (FA) is one such solvent, and can serve as a nucleobase precursor, but it is difficult to envision how FA could have been generated in large quantities or accumulated in terrestrial surface environments. We report here the conversion of aqueous acetonitrile (ACN) via hydrogen cyanide (HCN) as an intermediate into FA by γ-irradiation under conditions mimicking exposure to radioactive minerals. We estimate that a radioactive placer deposit could produce 0.1‒0.8 mol FA km-2 year-1. A uraninite fission zone comparable to the Oklo reactors in Gabon can produce 0.1‒1 mol m-2 year-1, orders of magnitude greater than other scenarios of FA production or delivery for which reaching sizeable concentrations of FA are problematic. Radioactive mineral deposits may be favorable settings for prebiotic compound formation through emergent geologic processes and FA-mediated organic chemistry.
Collapse
Affiliation(s)
- Zachary R Adam
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
| | - Yayoi Hongo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - H James Cleaves
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
- Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Isao Yoda
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Masashi Aono
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Japan
| |
Collapse
|
42
|
Vago JL, Westall F. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. ASTROBIOLOGY 2017; 17:471-510. [PMID: 31067287 PMCID: PMC5685153 DOI: 10.1089/ast.2016.1533] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.
Collapse
|
43
|
García-Ruiz JM, Nakouzi E, Kotopoulou E, Tamborrino L, Steinbock O. Biomimetic mineral self-organization from silica-rich spring waters. SCIENCE ADVANCES 2017; 3:e1602285. [PMID: 28345049 PMCID: PMC5357132 DOI: 10.1126/sciadv.1602285] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.
Collapse
Affiliation(s)
- Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas–Universidad de Granada, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain
| | - Elias Nakouzi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306–4390, USA
| | - Electra Kotopoulou
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas–Universidad de Granada, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain
| | - Leonardo Tamborrino
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas–Universidad de Granada, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306–4390, USA
| |
Collapse
|
44
|
Abstract
The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]-, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies.
Collapse
|
45
|
Glaab F, Rieder J, Klein R, Choquesillo‐Lazarte D, Melero‐Garcia E, García‐Ruiz J, Kunz W, Kellermeier M. Precipitation and Crystallization Kinetics in Silica Gardens. Chemphyschem 2017; 18:338-345. [PMID: 28001337 PMCID: PMC5347931 DOI: 10.1002/cphc.201600748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/24/2016] [Indexed: 11/16/2022]
Abstract
Silica gardens are extraordinary plant-like structures resulting from the complex interplay of relatively simple inorganic components. Recent work has highlighted that macroscopic self-assembly is accompanied by the spontaneous formation of considerable chemical gradients, which induce a cascade of coupled dissolution, diffusion, and precipitation processes occurring over timescales as long as several days. In the present study, this dynamic behavior was investigated for silica gardens based on iron and cobalt chloride by means of two synchrotron-based techniques, which allow the determination of concentration profiles and time-resolved monitoring of diffraction patterns, thus giving direct insight into the progress of dissolution and crystallization phenomena in the system. On the basis of the collected data, a kinetic model is proposed to describe the relevant reactions on a fundamental physicochemical level. The results show that the choice of the metal cations (as well as their counterions) is crucial for the development of silica gardens in both the short and long term (i.e. during tube formation and upon subsequent slow equilibration), and provide important clues for understanding the properties of related structures in geochemical and industrial environments.
Collapse
Affiliation(s)
- Fabian Glaab
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Julian Rieder
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Regina Klein
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | - Duane Choquesillo‐Lazarte
- Laboratorio de Estudios CristalográficosIACT (CSIC-UGR)Av. de las Palmeras 418100Armilla (Granada)Spain
| | - Emilio Melero‐Garcia
- Laboratorio de Estudios CristalográficosIACT (CSIC-UGR)Av. de las Palmeras 418100Armilla (Granada)Spain
| | - Juan‐Manuel García‐Ruiz
- Laboratorio de Estudios CristalográficosIACT (CSIC-UGR)Av. de las Palmeras 418100Armilla (Granada)Spain
| | - Werner Kunz
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgUniversitätsstrasse 3193040RegensburgGermany
| | | |
Collapse
|
46
|
Rotelli L, Trigo-Rodríguez JM, Moyano-Cambero CE, Carota E, Botta L, Di Mauro E, Saladino R. The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci Rep 2016; 6:38888. [PMID: 27958316 PMCID: PMC5153646 DOI: 10.1038/srep38888] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/14/2016] [Indexed: 02/02/2023] Open
Abstract
We show that carbonaceous chondrite meteorites actively and selectively catalyze the formation of relevant prebiotic molecules from formamide in aqueous media. Specific catalytic behaviours are observed, depending on the origin and composition of the chondrites and on the type of water present in the system (activity: thermal > seawater > pure). We report the one-pot synthesis of all the natural nucleobases, of aminoacids and of eight carboxylic acids (forming, from pyruvic acid to citric acid, a continuous series encompassing a large part of the extant Krebs cycle). These data shape a general prebiotic scenario consisting of carbonaceous meteorites acting as catalysts and of a volcanic-like environment providing heat, thermal waters and formamide. This scenario also applies to the other solar system locations that experienced rich delivery of carbonaceous materials, and whose physical-chemical conditions could have allowed chemical evolution.
Collapse
Affiliation(s)
- Luca Rotelli
- Biological and Ecological Department (DEB), University of Tuscia, 01100 Viterbo, Italy
| | - Josep M. Trigo-Rodríguez
- Institute of Space Sciences (CSIC-IEEC), Meteorites, Minor Bodies and Planetary Sciences Group, Campus UAB Bellaterra, Carrer de Can Magrans, s/n 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Carles E. Moyano-Cambero
- Institute of Space Sciences (CSIC-IEEC), Meteorites, Minor Bodies and Planetary Sciences Group, Campus UAB Bellaterra, Carrer de Can Magrans, s/n 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Eleonora Carota
- Biological and Ecological Department (DEB), University of Tuscia, 01100 Viterbo, Italy
| | - Lorenzo Botta
- Biological and Ecological Department (DEB), University of Tuscia, 01100 Viterbo, Italy
| | - Ernesto Di Mauro
- Biological and Ecological Department (DEB), University of Tuscia, 01100 Viterbo, Italy
| | - Raffaele Saladino
- Biological and Ecological Department (DEB), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
47
|
Nakouzi E, Steinbock O. Self-organization in precipitation reactions far from the equilibrium. SCIENCE ADVANCES 2016; 2:e1601144. [PMID: 27551688 PMCID: PMC4991932 DOI: 10.1126/sciadv.1601144] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/18/2016] [Indexed: 05/20/2023]
Abstract
Far from the thermodynamic equilibrium, many precipitation reactions create complex product structures with fascinating features caused by their unusual origins. Unlike the dissipative patterns in other self-organizing reactions, these features can be permanent, suggesting potential applications in materials science and engineering. We review four distinct classes of precipitation reactions, describe similarities and differences, and discuss related challenges for theoretical studies. These classes are hollow micro- and macrotubes in chemical gardens, polycrystalline silica carbonate aggregates (biomorphs), Liesegang bands, and propagating precipitation-dissolution fronts. In many cases, these systems show intricate structural hierarchies that span from the nanometer scale into the macroscopic world. We summarize recent experimental progress that often involves growth under tightly regulated conditions by means of wet stamping, holographic heating, and controlled electric, magnetic, or pH perturbations. In this research field, progress requires mechanistic insights that cannot be derived from experiments alone. We discuss how mesoscopic aspects of the product structures can be modeled by reaction-transport equations and suggest important targets for future studies that should also include materials features at the nanoscale.
Collapse
Affiliation(s)
- Elias Nakouzi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306–4390, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306–4390, USA
| |
Collapse
|