1
|
Li X, Combs JD, Salaita K, Shu X. Polarized focal adhesion kinase activity within a focal adhesion during cell migration. Nat Chem Biol 2023; 19:1458-1468. [PMID: 37349581 PMCID: PMC10732478 DOI: 10.1038/s41589-023-01353-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.
Collapse
Affiliation(s)
- Xiaoquan Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
To TL, Li X, Shu X. Spying on SARS-CoV-2 with Fluorescent Tags and Protease Reporters. Viruses 2023; 15:2005. [PMID: 37896782 PMCID: PMC10612051 DOI: 10.3390/v15102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The SARS-CoV-2 coronavirus has caused worldwide disruption through the COVID-19 pandemic, providing a sobering reminder of the profound impact viruses can have on human well-being. Understanding virus life cycles and interactions with host cells lays the groundwork for exploring therapeutic strategies against virus-related diseases. Fluorescence microscopy plays a vital role in virus imaging, offering high spatiotemporal resolution, sensitivity, and spectroscopic versatility. In this opinion piece, we first highlight two recent techniques, SunTag and StayGold, for the in situ imaging of viral RNA translation and viral assembly. Next, we discuss a new class of genetically encoded fluorogenic protease reporters, such as FlipGFP, which can be customized to monitor SARS-CoV-2's main (Mpro) or papain-like (PLpro) protease activity. These assays have proven effective in identifying potential antivirals through high-throughput screening, making fluorogenic viral protease reporters a promising platform for viral disease diagnostics and therapeutics.
Collapse
Affiliation(s)
| | - Xiaoquan Li
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, UC San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, UC San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
4
|
Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1975-1989. [PMID: 35906527 DOI: 10.1007/s43630-022-00272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus radiodurans phytochrome (DrBphP). Using crystallography, we show that in the H260A variant, the missing imidazole side chain leads to increased water content in the binding pocket. On the other hand, Y263F mutation reduces the water occupancy around the chromophore. Together, these changes in water coordination alter the protonation and spectroscopic properties of the biliverdin. These results pinpoint the importance of this conserved histidine and tyrosine, and the related water network, for the function and applications of phytochromes.
Collapse
|
5
|
Stepanenko OV, Kuznetsova IM, Turoverov KK, Stepanenko OV. Impact of Double Covalent Binding of BV in NIR FPs on Their Spectral and Physicochemical Properties. Int J Mol Sci 2022; 23:ijms23137347. [PMID: 35806351 PMCID: PMC9267011 DOI: 10.3390/ijms23137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the photophysical properties and stability of near-infrared fluorescent proteins (NIR FPs) based on bacterial phytochromes is of great importance for the design of efficient fluorescent probes for use in cells and in vivo. Previously, the natural ligand of NIR FPs biliverdin (BV) has been revealed to be capable of covalent binding to the inherent cysteine residue in the PAS domain (Cys15), and to the cysteine residue introduced into the GAF domain (Cys256), as well as simultaneously with these two residues. Here, based on the spectroscopic analysis of several NIR FPs with both cysteine residues in PAS and GAF domains, we show that the covalent binding of BV simultaneously with two domains is the reason for the higher quantum yield of BV fluorescence in these proteins as a result of rigid fixation of the chromophore in their chromophore-binding pocket. We demonstrate that since the attachment sites are located in different regions of the polypeptide chain forming a figure-of-eight knot, their binding to BV leads to shielding of many sites of proteolytic degradation due to additional stabilization of the entire protein structure. This makes NIR FPs with both cysteine residues in PAS and GAF domains less susceptible to cleavage by intracellular proteases.
Collapse
|
6
|
Rydzewski J, Walczewska-Szewc K, Czach S, Nowak W, Kuczera K. Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome. J Phys Chem B 2022; 126:2647-2657. [PMID: 35357137 PMCID: PMC9014414 DOI: 10.1021/acs.jpcb.2c00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The ability of phytochromes
to act as photoswitches in plants and
microorganisms depends on interactions between a bilin-like chromophore
and a host protein. The interconversion occurs between the spectrally
distinct red (Pr) and far-red (Pfr) conformers. This conformational
change is triggered by the photoisomerization of the chromophore D-ring
pyrrole. In this study, as a representative example of a phytochrome-bilin
system, we consider biliverdin IXα (BV) bound to bacteriophytochrome
(BphP) from Deinococcus radiodurans. In the absence
of light, we use an enhanced sampling molecular dynamics (MD) method
to overcome the photoisomerization energy barrier. We find that the
calculated free energy (FE) barriers between essential metastable
states agree with spectroscopic results. We show that the enhanced
dynamics of the BV chromophore in BphP contributes to triggering nanometer-scale
conformational movements that propagate by two experimentally determined
signal transduction pathways. Most importantly, we describe how the
metastable states enable a thermal transition known as the dark reversion
between Pfr and Pr, through a previously unknown intermediate state
of Pfr. We present the heterogeneity of temperature-dependent Pfr
states at the atomistic level. This work paves a way toward understanding
the complete mechanism of the photoisomerization of a bilin-like chromophore
in phytochromes.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Krzysztof Kuczera
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
8
|
Rathnachalam S, Menger MFS, Faraji S. Influence of the Environment on Shaping the Absorption of Monomeric Infrared Fluorescent Proteins. J Phys Chem B 2021; 125:2231-2240. [PMID: 33626280 PMCID: PMC7957859 DOI: 10.1021/acs.jpcb.0c10466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Indexed: 12/05/2022]
Abstract
Infrared fluorescent proteins (iRFPs) are potential candidates for deep-tissue in vivo imaging. Here, we provide molecular-level insights into the role of the protein environment in the structural stability of the chromophore within the protein binding pocket through the flexible hydrogen-bonding network using molecular dynamics simulation. Furthermore, we present systematic excited-state analysis to characterize the nature of the first two excited states and the role of the environment in shaping the nature of the chromophore's excited states within the hybrid quantum mechanics/molecular mechanics framework. Our results reveal that the environment red-shifts the absorption of the chromophore by about 0.32 eV compared to the isolated counterpart, and besides the structural stability, the protein environment does not alter the nature of the excited state of the chromophore significantly. Our study contributes to the fundamental understanding of the excited-state processes of iRFPs in a complex environment and provides a design principle for developing iRFPs with desired spectral properties.
Collapse
Affiliation(s)
- Sivasudhan Rathnachalam
- Theoretical Chemistry
Group,
Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands
| | - Maximilian F. S.
J. Menger
- Theoretical Chemistry
Group,
Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands
| | - Shirin Faraji
- Theoretical Chemistry
Group,
Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands
| |
Collapse
|
9
|
Grigorenko BL, Polyakov IV, Nemukhin AV. Modeling photophysical properties of the bacteriophytochrome-based fluorescent protein IFP1.4. J Chem Phys 2021; 154:065101. [PMID: 33588533 DOI: 10.1063/5.0026475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An enhanced interest in the phytochrome-based fluorescent proteins is explained by their ability to absorb and emit light in the far-red and infra-red regions particularly suitable for bioimaging. The fluorescent protein IFP1.4 was engineered from the chromophore-binding domain of a bacteriophytochrome in attempts to increase the fluorescence quantum yield. We report the results of simulations of structures in the ground S0 and excited S1 electronic states of IFP1.4 using the methods of quantum chemistry and quantum mechanics/molecular mechanics. We construct different protonation states of the biliverdin (BV) chromophore in the red-absorbing form of the protein by moving protons from the BV pyrrole rings to a suitable acceptor within the system and show that these structures are close in energy but differ by absorption bands. For the first time, we report structures of the minimum energy conical intersection points S1/S0 on the energy surfaces of BV in the protein environment and describe their connection to the local minima in the excited S1 state. These simulations allow us to characterize the deactivation routes in IFP1.4.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Igor V Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| |
Collapse
|
10
|
Stepanenko OV, Stepanenko OV, Turoverov KK, Kuznetsova IM. Probing the allostery in dimeric near-infrared biomarkers derived from the bacterial phytochromes: The impact of the T204A substitution on the inter-monomer interaction. Int J Biol Macromol 2020; 162:894-902. [PMID: 32569685 DOI: 10.1016/j.ijbiomac.2020.06.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
In dimeric near-infrared (NIR) biomarkers engineered from bacterial phytochromes the covalent binding of BV to the cysteine residue in one monomer of a protein allosterically prevents the chromophore embedded into the pocket of the other monomer from the covalent binding to the cysteine residue. In this work, we analyzed the impact on inter-monomeric allosteric effects in dimeric NIR biomarkers of substitutions at position 204, one of the target residues of mutagenesis at the evolution of these proteins. The T204A substitution in iRFP713, developed on the basis of RpBphP2, and in its mutant variant iRFP713/C15S/V256C, in which the ligand covalent attachment site was changed, resulted in the rearrangement of the hydrogen bond network joining the chromophore with the adjacent amino acids and bound water molecules in its local environment. The change in the intramolecular contacts between the chromophore and its protein environment in iRFP713/C15S/V256C caused by the T204A substitution reduced the negative cooperativity of cofactor binding. We discuss the possible influence of cross-talk between monomers the functioning of full-length phytochromes.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| |
Collapse
|
11
|
Wang D, Qin Y, Zhang M, Li X, Wang L, Yang X, Zhong D. The Origin of Ultrafast Multiphasic Dynamics in Photoisomerization of Bacteriophytochrome. J Phys Chem Lett 2020; 11:5913-5919. [PMID: 32614188 PMCID: PMC8172095 DOI: 10.1021/acs.jpclett.0c01394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Red-light bacteriophytochromes regulate many physiological functions through photoisomerization of a linear tetrapyrrole chromophore. In this work, we mapped out femtosecond-resolved fluorescence spectra of the excited Pr state and observed unique active-site relaxations on the picosecond time scale with unusual spectral tuning of rises on the blue side and decays on the red side of the emission. We also observed initial wavepacket dynamics in femtoseconds with two low-frequency modes of 38 and 181 cm-1 as well as the intermediate product formation after isomerization in hundreds of picoseconds. With critical mutations at the active site, we observed similar dynamic patterns with different times for both relaxation and isomerization, consistent with the structural and chemical changes induced by the mutations. The observed multiphasic dynamics clearly represents the active-site relaxation, not different intermediate reactions or excitation of heterogeneous ground states. The active-site relaxation must be considered in understanding overall isomerization reactions in phytochromes, and such a molecular mechanism should be general.
Collapse
Affiliation(s)
- Dihao Wang
- Program of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yangzhong Qin
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Meng Zhang
- Program of Biophysics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiankun Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lijuan Wang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | |
Collapse
|
12
|
Revealing the origin of multiphasic dynamic behaviors in cyanobacteriochrome. Proc Natl Acad Sci U S A 2020; 117:19731-19736. [PMID: 32759207 DOI: 10.1073/pnas.2001114117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteriochromes are photoreceptors in cyanobacteria that exhibit a wide spectral coverage and unique photophysical properties from the photoinduced isomerization of a linear tetrapyrrole chromophore. Here, we integrate femtosecond-resolved fluorescence and transient-absorption methods and unambiguously showed the significant solvation dynamics occurring at the active site from a few to hundreds of picoseconds. These motions of local water molecules and polar side chains are continuously convoluted with the isomerization reaction, leading to a nonequilibrium processes with continuous active-site motions. By mutations of critical residues at the active site, the modified local structures become looser, resulting in faster solvation relaxations and isomerization reaction. The observation of solvation dynamics is significant and critical to the correct interpretation of often-observed multiphasic dynamic behaviors, and thus the previously invoked ground-state heterogeneity may not be relevant to the excited-state isomerization reaction.
Collapse
|
13
|
Hassan F, Khan FI, Song H, Lai D, Juan F. Effects of reverse genetic mutations on the spectral and photochemical behavior of a photoactivatable fluorescent protein PAiRFP1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117807. [PMID: 31806482 DOI: 10.1016/j.saa.2019.117807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Bacteriophytochrome photoreceptors (BphPs) containing biliverdin (BV) have great potential for the development of genetically engineered near-infrared fluorescent proteins (NIR FPs). We investigated a photoactivatable fluorescent protein PAiRFP1, was engineered through directed molecular evolution. The coexistence of both red light absorbing (Pr) and far-red light absorbing (Pfr) states in dark is essential for the photoactivation of PAiRFP1. The PCR based site-directed reverse mutagenesis, spectroscopic measurements and molecular dynamics (MD) simulations were performed on three targeted sites V386A, V480A and Y498H in PHY domain to explore their potential effects during molecular evolution of PAiRFP1. We found that these substitutions did not affect the coexistence of Pr and Pfr states but led to slight changes in the photophysical parameters. The covalent docking of biliverdin (cis and trans form) with PAiRFP1 was followed by several 100 ns MD simulations to provide some theoretical explanations for the coexistence of Pr and pfr states. The results suggested that experimentally observed coexistence of Pr and Pfr states in both PAiRFP1 and mutants were resulted from the improved stability of Pr state. The use of experimental and computational work provided useful understanding of Pr and Pfr states and the effects of these mutations on the photophysical properties of PAiRFP1.
Collapse
Affiliation(s)
- Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Honghong Song
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
14
|
Villegas-Escobar N, Matute RA. The Keto-Enol Tautomerism of Biliverdin in Bacteriophytochrome: Could it Explain the Bathochromic Shift in the Pfr Form? †. Photochem Photobiol 2020; 97:99-109. [PMID: 33053203 DOI: 10.1111/php.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/08/2020] [Indexed: 01/21/2023]
Abstract
Phytochromes are ubiquitous photoreceptors found in plants, eukaryotic algae, bacteria and fungi. Particularly, when bacteriophytochrome is irradiated with light, a Z-to-E (photo)isomerization takes place in the biliverdin chromophore as part of the Pr-to-Pfr conversion. This photoisomerization is concomitant with a bathochromic shift in the Q-band. Based on experimental evidence, we studied a possible keto-enol tautomerization of BV, as an alternative reaction channel after its photoisomerization. In this contribution, the noncatalyzed and water-assisted reaction pathways for the lactam-lactim interconversion through consecutive keto-enol tautomerization of a model BV species were studied deeply. It was found that in the absence of water molecules, the proton transfer reaction is unable to take place at normal conditions, due to large activation energies, and the endothermic formation of lactim derivatives prevents its occurrence. However, when a water molecule assists the process by catalyzing the proton transfer reaction, the activation free energy lowers considerably. The drastic lowering in the activation energy for the keto-enol tautomerism is due to the stabilization of the water moiety through hydrogen bonds along the reaction coordinate. The absorption spectra were computed for all tautomers. It was found that the UV-visible absorption bands are in reasonable agreement with the experimental data. Our results suggest that although the keto-enol equilibrium is likely favoring the lactam tautomer, the equilibrium could eventually be shifted in favor of the lactim, as it has been reported to occur in the dark reversion mechanism of bathy phytochromes.
Collapse
Affiliation(s)
- Nery Villegas-Escobar
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile
| | - Ricardo A Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
15
|
Karasev MM, Stepanenko OV, Rumyantsev KA, Turoverov KK, Verkhusha VV. Near-Infrared Fluorescent Proteins and Their Applications. BIOCHEMISTRY (MOSCOW) 2019; 84:S32-S50. [PMID: 31213194 DOI: 10.1134/s0006297919140037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High transparency, low light-scattering, and low autofluorescence of mammalian tissues in the near-infrared (NIR) spectral range (~650-900 nm) open a possibility for in vivo imaging of biological processes at the micro- and macroscales to address basic and applied problems in biology and biomedicine. Recently, probes that absorb and fluoresce in the NIR optical range have been engineered using bacterial phytochromes - natural NIR light-absorbing photoreceptors that regulate metabolism in bacteria. Since the chromophore in all these proteins is biliverdin, a natural product of heme catabolism in mammalian cells, they can be used as genetically encoded fluorescent probes, similarly to GFP-like fluorescent proteins. In this review, we discuss photophysical and biochemical properties of NIR fluorescent proteins, reporters, and biosensors and analyze their characteristics required for expression of these molecules in mammalian cells. Structural features and molecular engineering of NIR fluorescent probes are discussed. Applications of NIR fluorescent proteins and biosensors for studies of molecular processes in cells, as well as for tissue and organ visualization in whole-body imaging in vivo, are described. We specifically focus on the use of NIR fluorescent probes in advanced imaging technologies that combine fluorescence and bioluminescence methods with photoacoustic tomography.
Collapse
Affiliation(s)
- M M Karasev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Medicum, University of Helsinki, Helsinki, 00290, Finland
| | - O V Stepanenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - K A Rumyantsev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - K K Turoverov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - V V Verkhusha
- Medicum, University of Helsinki, Helsinki, 00290, Finland. .,Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
QM/MM Benchmarking of Cyanobacteriochrome Slr1393g3 Absorption Spectra. Molecules 2019; 24:molecules24091720. [PMID: 31058803 PMCID: PMC6540152 DOI: 10.3390/molecules24091720] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteriochromes are compact and spectrally diverse photoreceptor proteins that are promising candidates for biotechnological applications. Computational studies can contribute to an understanding at a molecular level of their wide spectral tuning and diversity. In this contribution, we benchmark methods to model a 110 nm shift in the UV/Vis absorption spectrum from a red- to a green-absorbing form of the cyanobacteriochrome Slr1393g3. Based on an assessment of semiempirical methods to describe the chromophore geometries of both forms in vacuo, we find that DFTB2+D leads to structures that are the closest to the reference method. The benchmark of the excited state calculations is based on snapshots from quantum mechanics/molecular mechanics molecular dynamics simulations. In our case, the methods RI-ADC(2) and sTD-DFT based on CAM-B3LYP ground state calculations perform the best, whereas no functional can be recommended to simulate the absorption spectra of both forms with time-dependent density functional theory. Furthermore, the difference in absorption for the lowest energy absorption maxima of both forms can already be modelled with optimized structures, but sampling is required to improve the shape of the absorption bands of both forms, in particular for the second band. This benchmark study can guide further computational studies, as it assesses essential components of a protocol to model the spectral tuning of both cyanobacteriochromes and the related phytochromes.
Collapse
|
17
|
Nemukhin AV, Grigorenko BL, Khrenova MG, Krylov AI. Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. J Phys Chem B 2019; 123:6133-6149. [DOI: 10.1021/acs.jpcb.9b00591] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander V. Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Bella L. Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Research Center of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russian
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
18
|
Modi V, Donnini S, Groenhof G, Morozov D. Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of a Bacteriophytochrome. J Phys Chem B 2019; 123:2325-2334. [PMID: 30762368 PMCID: PMC6727380 DOI: 10.1021/acs.jpcb.9b01117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
The
tetrapyrrole chromophore biliverdin IXα (BV) in the bacteriophytochrome
from Deinococcus radiodurans (DrBphP)
is usually assumed to be fully protonated, but this assumption has
not been systematically validated by experiments or extensive computations.
Here, we use force field molecular dynamics simulations and quantum
mechanics/molecular mechanics calculations with density functional
theory and XMCQDPT2 methods to investigate the effect of the five
most probable protonation forms of BV on structural stability, binding
pocket interactions, and absorption spectra in the two photochromic
states of DrBphP. While agreement with X-ray structural data and measured
UV/vis spectra suggest that in both states the protonated form of
the chromophore dominates, we also find that a minor population with
a deprotonated D-ring could contribute to the red-shifted tail in
the absorption spectra.
Collapse
|
19
|
Lee E, Shim SH, Cho M. Fluorescence enhancement of a ligand-activated fluorescent protein induced by collective noncovalent interactions. Chem Sci 2018; 9:8325-8336. [PMID: 30542580 PMCID: PMC6249632 DOI: 10.1039/c8sc03558j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
Fluorescent proteins contain an internal chromophore constituted of amino acids or an external chromophore covalently bonded to the protein. To increase their fluorescence intensities, many research groups have attempted to mutate amino acids within or near the chromophore. Recently, a new type of fluorescent protein, called UnaG, in which the ligand binds to the protein through many noncovalent interactions was discovered. Later, a series of mutants of the UnaG protein were introduced, which include eUnaG with valine 2 mutated to leucine emitting significantly stronger fluorescence than the wild type and V2T mutant, in which valine 2 is mutated to threonine, emitting weaker fluorescence than the wild type. Interestingly, the single mutation sites of both eUnaG and V2T mutants are distant from the fluorophore, bilirubin, which renders the mechanism of such fluorescence enhancement or reduction unclear. To elucidate the origin of fluorescence intensity changes induced by the single mutations, we carried out extensive analyses on MD simulations for the original UnaG, eUnaG and V2T, and found that the bilirubin ligand bound to eUnaG is conformationally more rigid than the wild-type, particularly in the skeletal dihedral angles, possibly resulting in the increase of quantum yield through a reduction of non-radiative decay. On the other hand, the bilirubin bound to the V2T appears to be flexible than that in the UnaG. Furthermore, examining the structural correlations between the ligand and proteins, we found evidence that the bilirubin ligand is encapsulated in different environments composed of protein residues and water molecules that increase or decrease the stability of the ligand. The changed protein stability affects the mobility and confinement of water molecules captured between bilirubin and the protein. Since the flexible ligand contains multiple hydrogen bond (H-bond) donors and acceptors, the H-bonding structure and dynamics of bound water molecules are highly correlated with the rigidity of the bound ligand. Our results suggest that, to understand the fluorescence properties of protein mutants, especially the ones with noncovalently bound fluorophores with internal rotations, the interaction network among protein residues, ligand, and water molecules within the binding cavity should be investigated rather than focusing on the local structure near the fluorescing moiety. Our in-depth simulation study may offer a foundation for the design principles for engineering this new class of fluorescent proteins.
Collapse
Affiliation(s)
- Euihyun Lee
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Republic of Korea . ;
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Sang-Hee Shim
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Republic of Korea . ;
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Republic of Korea . ;
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
20
|
Polyakov IV, Grigorenko BL, Mironov VA, Nemukhin AV. Modeling structure and excitation of biliverdin-binding domains in infrared fluorescent proteins. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Structural analysis and probing the conformational space of dansylamide by means of gas-phase electron diffraction and quantum chemistry. Struct Chem 2018. [DOI: 10.1007/s11224-018-1108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Khrenova MG, Kulakova AM, Nemukhin AV. Competition between two cysteines in covalent binding of biliverdin to phytochrome domains. Org Biomol Chem 2018; 16:7518-7529. [DOI: 10.1039/c8ob02262c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we disclose a mechanism of competing chemical reactions of protein assembly for a bacterial phytochrome using modern methods of molecular modeling.
Collapse
Affiliation(s)
- Maria G. Khrenova
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
- Federal Research Center of Biotechnology
| | - Anna M. Kulakova
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - Alexander V. Nemukhin
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
- Emanuel Institute of Biochemical Physics
| |
Collapse
|