1
|
Husain NAC, Jamaluddin H, Jonet MA. Functional and structural characterization of a thermostable flavin reductase from Geobacillus mahadii Geo-05. Int J Biol Macromol 2024; 275:133721. [PMID: 38986972 DOI: 10.1016/j.ijbiomac.2024.133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Flavin reductases play a vital role in catalyzing the reduction of flavin through NADH or NADPH oxidation. The gene encoding flavin reductase from the thermophilic bacterium Geobacillus mahadii Geo-05 (GMHpaC) was cloned, overexpressed in Escherichia coli BL21 (DE3) pLysS, and purified to homogeneity. The purified recombinant GMHpaC (Class II) contains chromogenic cofactors, evidenced by maximal absorbance peaks at 370 nm and 460 nm. GMHpaC stands out as the most thermostable and pH-tolerant flavin reductase reported to date, retaining up to 95 % catalytic activity after incubation at 70 °C for 30 min and maintaining over 80 % activity within a pH range of 2-12 for 30 min. Furthermore, GMHpaC's catalytic activity increases by 52 % with FMN as a co-factor compared to FAD and riboflavin. GMHpaC, coupled with 4-hydroxyphenylacetate-3-monooxygenase (GMHpaB) from G. mahadii Geo-05, enhances the hydroxylation of 4-hydroxyphenylacetate (HPA) by 85 %. The modeled structure of GMHpaC reveals relatively conserved flavin and NADH binding sites. Modeling and docking studies shed light on structural features and amino acid substitutions that determine GMHpaC's co-factor specificity. The remarkable thermostability, high catalytic activity, and general stability exhibited by GMHpaC position it as a promising enzyme candidate for various industrial applications.
Collapse
Affiliation(s)
- Nor Asyikin Che Husain
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Structural Biology & Functional Omics, Malaysian Genome and Vaccine Institute, 43000 Kajang, Selangor, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Mohd Anuar Jonet
- Structural Biology & Functional Omics, Malaysian Genome and Vaccine Institute, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Ke Z, Lan M, Yang T, Jia W, Gou Z, Chen K, Jiang J. A two-component monooxygenase for continuous denitration and dechlorination of chlorinated 4-nitrophenol in Ensifer sp. strain 22-1. ENVIRONMENTAL RESEARCH 2021; 198:111216. [PMID: 33971135 DOI: 10.1016/j.envres.2021.111216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The environmental fates of chlorinated 4-nitrophenols, 2,6-dichloro-4-nitrophenol (2,6-DCNP) and 2-chloro-4-nitrophenol (2C4NP), mediated via microbial catabolism have attracted great attention due to their high toxicity and persistence in the environment. In this study, a strain of Ensifer sp. 22-1 that was capable of degrading both 2,6-DCNP and 2C4NP was isolated from a halogenated aromatic-contaminated soil sample. A gene cluster cnpBADCERM was predicted to be involved in the catabolism of 2,6-DCNP and 2C4NP based on genome sequence analysis. A two-component monooxygenase CnpAB, composed of an oxygenase component (CnpA) and a reductase component (CnpB), was confirmed to catalyze the continuous denitration and dechlorination of 2,6-DCNP and 2C4NP to 6-chlorohydroxyquinol (6-CHQ) and hydroxyquinol (HQ), respectively. Knockout of cnpA resulted in the complete loss of the capacity for strain 22-1 to degrade 2,6-DCNP and 2C4NP. Homologous modeling and docking showed that Val155~Ala159, Phe206~Pro209 and Phe446~Arg461 of CnpA participated in the formation of the FAD-binding pocket, and Arg101, Val155 and Asn447 formed hydrogen bonds with 2,6-DCNP/2C4NP in the substrate-binding pocket. This work characterized a new two-component monooxygenase for 2,6-DCNP and 2C4NP, and enriched our understanding of the degradation mechanism of chlorinated nitrophenols (CNPs) by microorganisms.
Collapse
Affiliation(s)
- Zhuang Ke
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Minjian Lan
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Tunan Yang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Weibin Jia
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhenjiu Gou
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kai Chen
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China; Jiangsu Key Lab for Solid Organic Waste Utilization, 210095, Nanjing, China.
| |
Collapse
|
3
|
Li H, Forson B, Eckshtain-Levi M, Valentino H, Martín Del Campo JS, Tanner JJ, Sobrado P. Biochemical Characterization of the Two-Component Flavin-Dependent Monooxygenase Involved in Valanimycin Biosynthesis. Biochemistry 2020; 60:31-40. [PMID: 33350810 DOI: 10.1021/acs.biochem.0c00679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The flavin reductase (FRED) and isobutylamine N-hydroxylase (IBAH) from Streptomyces viridifaciens constitute a two-component, flavin-dependent monooxygenase system that catalyzes the first step in valanimycin biosynthesis. FRED is an oxidoreductase that provides the reduced flavin to IBAH, which then catalyzes the hydroxylation of isobutylamine (IBA) to isobutylhydroxylamine (IBHA). In this work, we used several complementary methods to investigate FAD binding, steady-state and rapid reaction kinetics, and enzyme-enzyme interactions in the FRED:IBAH system. The affinity of FRED for FADox is higher than its affinity for FADred, consistent with its function as a flavin reductase. Conversely, IBAH binds FADred more tightly than FADox, consistent with its role as a monooxygenase. FRED exhibits a strong preference (28-fold) for NADPH over NADH as the electron source for FAD reduction. Isothermal titration calorimetry was used to study the association of FRED and IBAH. In the presence of FAD, either oxidized or reduced, FRED and IBAH associate with a dissociation constant of 7-8 μM. No interaction was observed in the absence of FAD. These results are consistent with the formation of a protein-protein complex for direct transfer of reduced flavin from the reductase to the monooxygenase in this two-component system.
Collapse
Affiliation(s)
- Hao Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Benedicta Forson
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Meital Eckshtain-Levi
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hannah Valentino
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - John J Tanner
- Departments of Biochemistry and Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Jaremko MJ, Davis TD, Corpuz JC, Burkart MD. Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 2020; 37:355-379. [PMID: 31593192 PMCID: PMC7101270 DOI: 10.1039/c9np00047j] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Joshua C Corpuz
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, USA.
| |
Collapse
|
5
|
Chenprakhon P, Wongnate T, Chaiyen P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Protein Sci 2020; 28:8-29. [PMID: 30311986 DOI: 10.1002/pro.3525] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Many flavoenzymes catalyze hydroxylation of aromatic compounds especially phenolic compounds have been isolated and characterized. These enzymes can be classified as either single-component or two-component flavin-dependent hydroxylases (monooxygenases). The hydroxylation reactions catalyzed by the enzymes in this group are useful for modifying the biological properties of phenolic compounds. This review aims to provide an in-depth discussion of the current mechanistic understanding of representative flavin-dependent monooxygenases including 3-hydroxy-benzoate 4-hydroxylase (PHBH, a single-component hydroxylase), 3-hydroxyphenylacetate 4-hydroxylase (HPAH, a two-component hydroxylase), and other monooxygenases which catalyze reactions in addition to hydroxylation, including 2-methyl-3-hydroxypyridine-5-carboxylate oxygenase (MHPCO, a single-component enzyme that catalyzes aromatic-ring cleavage), and HadA monooxygenase (a two-component enzyme that catalyzes additional group elimination reaction). These enzymes have different unique structural features which dictate their reactivity toward various substrates and influence their ability to stabilize flavin intermediates such as C4a-hydroperoxyflavin. Understanding the key catalytic residues and the active site environments important for governing enzyme reactivity will undoubtedly facilitate future work in enzyme engineering or enzyme redesign for the development of biocatalytic methods for the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand
| |
Collapse
|
6
|
Deng Y, Faivre B, Back O, Lombard M, Pecqueur L, Fontecave M. Structural and Functional Characterization of 4-Hydroxyphenylacetate 3-Hydroxylase from Escherichia coli. Chembiochem 2020; 21:163-170. [PMID: 31155821 DOI: 10.1002/cbic.201900277] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/08/2022]
Abstract
The hydroxylation of phenols into polyphenols, which are valuable chemicals and pharmaceutical products, is a challenging reaction. The search for green synthetic processes has led to considering microorganisms and pure hydroxylases as catalysts for phenol hydroxylation. Herein, we report the structural and functional characterization of the flavin adenine dinucleotide (FAD)-dependent 4-hydroxyphenylacetate 3-monooxygenase from Escherichia coli, named HpaB. It is shown that this enzyme enjoys a relatively broad substrate specificity, which allows the conversion of a number of non-natural phenolic compounds, such as tyrosol, hydroxymandelic acid, coumaric acid, hydroxybenzoic acid and its methyl ester, and phenol, into the corresponding catechols. The reaction can be performed by using a simple chemical assay based on formate as the electron donor and the organometallic complex [Rh(bpy)Cp*(H2 O)]2+ (Cp*: 1,2,3,4,5-pentamethylcyclopentadiene, bpy: 2,2'-bipyridyl) as the catalyst for FAD reduction. The availability of a crystal structure of HpaB in complex with FAD at 1.8 Å resolution opens up the possibility of the rational tuning of the substrate specificity and activity of this interesting class of phenol hydroxylases.
Collapse
Affiliation(s)
- Yifan Deng
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS, UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS, UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Olivier Back
- Solvay, Research and Innovation Center of Lyon, 85, Avenue des frères Perret, 69190, Saint-Fons, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS, UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS, UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS, UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| |
Collapse
|
7
|
Pongpamorn P, Watthaisong P, Pimviriyakul P, Jaruwat A, Lawan N, Chitnumsub P, Chaiyen P. Identification of a Hotspot Residue for Improving the Thermostability of a Flavin‐Dependent Monooxygenase. Chembiochem 2019; 20:3020-3031. [DOI: 10.1002/cbic.201900413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pornkanok Pongpamorn
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn University 6 Rajamankha Nai Road Nakornpathom 73000 Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Paholyothin Road Klong 1 Klong Luang Pathumthani 12120 Thailand
| | - Narin Lawan
- Department of ChemistryFaculty of ScienceChiang Mai University Chiang Mai 50200 Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Paholyothin Road Klong 1 Klong Luang Pathumthani 12120 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
8
|
Levy-Booth DJ, Fetherolf MM, Stewart GR, Liu J, Eltis LD, Mohn WW. Catabolism of Alkylphenols in Rhodococcus via a Meta-Cleavage Pathway Associated With Genomic Islands. Front Microbiol 2019; 10:1862. [PMID: 31481940 PMCID: PMC6710988 DOI: 10.3389/fmicb.2019.01862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023] Open
Abstract
The bacterial catabolism of aromatic compounds has considerable promise to convert lignin depolymerization products to commercial chemicals. Alkylphenols are a key class of depolymerization products whose catabolism is not well-elucidated. We isolated Rhodococcus rhodochrous EP4 on 4-ethylphenol and applied genomic and transcriptomic approaches to elucidate alkylphenol catabolism in EP4 and Rhodococcus jostii RHA1. RNA-Seq and RT-qPCR revealed a pathway encoded by the aphABCDEFGHIQRS genes that degrades 4-ethylphenol via the meta-cleavage of 4-ethylcatechol. This process was initiated by a two-component alkylphenol hydroxylase, encoded by the aphAB genes, which were upregulated ~3,000-fold. Purified AphAB from EP4 had highest specific activity for 4-ethylphenol and 4-propylphenol (~2,000 U/mg) but did not detectably transform phenol. Nevertheless, a ΔaphA mutant in RHA1 grew on 4-ethylphenol by compensatory upregulation of phenol hydroxylase genes (pheA1-3). Deletion of aphC, encoding an extradiol dioxygenase, prevented growth on 4-alkylphenols but not phenol. Disruption of pcaL in the β-ketoadipate pathway prevented growth on phenol but not 4-alkylphenols. Thus, 4-alkylphenols are catabolized exclusively via meta-cleavage in rhodococci while phenol is subject to ortho-cleavage. A putative genomic island encoding aph genes was identified in EP4 and several other rhodococci. Overall, this study identifies a 4-alkylphenol pathway in rhodococci, demonstrates key enzymes involved, and presents evidence that the pathway is encoded in a genomic island. These advances are of particular importance for wide-ranging industrial applications of rhodococci, including upgrading of lignocellulose biomass.
Collapse
Affiliation(s)
- David J Levy-Booth
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Morgan M Fetherolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Gordon R Stewart
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Chen W, Yao J, Meng J, Han W, Tao Y, Chen Y, Guo Y, Shi G, He Y, Jin JM, Tang SY. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Nat Commun 2019; 10:960. [PMID: 30814511 PMCID: PMC6393456 DOI: 10.1038/s41467-019-08781-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/11/2019] [Indexed: 12/04/2022] Open
Abstract
Genetic diversity is a result of evolution, enabling multiple ways for one particular physiological activity. Here, we introduce this strategy into bioengineering. We design two hydroxytyrosol biosynthetic pathways using tyrosine as substrate. We show that the synthetic capacity is significantly improved when two pathways work simultaneously comparing to each individual pathway. Next, we engineer flavin-dependent monooxygenase HpaBC for tyrosol hydroxylase, tyramine hydroxylase, and promiscuous hydroxylase active on both tyrosol and tyramine using directed divergent evolution strategy. Then, the mutant HpaBCs are employed to catalyze two missing steps in the hydroxytyrosol biosynthetic pathways designed above. Our results demonstrate that the promiscuous tyrosol/tyramine hydroxylase can minimize the cell metabolic burden induced by protein overexpression and allow the biosynthetic carbon flow to be divided between two pathways. Thus, the efficiency of the hydroxytyrosol biosynthesis is significantly improved by rearranging the metabolic flux among multiple pathways.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Yao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Meng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Han
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yihua Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Guo
- Center for Drug Discovery & Technology Development of Yunnan Traditional Medicine, Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Guizhi Shi
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang He
- Life Science Institute, Zhejiang University, Hangzhou, China.
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
11
|
Yuenyao A, Petchyam N, Kamonsutthipaijit N, Chaiyen P, Pakotiprapha D. Crystal structure of the flavin reductase of Acinetobacter baumannii p-hydroxyphenylacetate 3-hydroxylase (HPAH) and identification of amino acid residues underlying its regulation by aromatic ligands. Arch Biochem Biophys 2018; 653:24-38. [PMID: 29940152 DOI: 10.1016/j.abb.2018.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
The first step in the degradation of p-hydroxyphenylacetic acid (HPA) is catalyzed by the two-component enzyme p-hydroxyphenylacetate 3-hydroxylase (HPAH). The two components of Acinetobacter baumannii HPAH are known as C1 and C2, respectively. C1 is a flavin reductase that uses NADH to generate reduced flavin mononucleotide (FMNH-), which is used by C2 in the hydroxylation of HPA. Interestingly, although HPA is not directly involved in the reaction catalyzed by C1, the presence of HPA dramatically increases the FMN reduction rate. Amino acid sequence analysis revealed that C1 contains two domains: an N-terminal flavin reductase domain, and a C-terminal MarR domain. Although MarR proteins typically function as transcription regulators, the MarR domain of C1 was found to play an auto-inhibitory role. Here, we report a crystal structure of C1 and small-angle X-ray scattering (SAXS) studies that revealed that C1 undergoes a substantial conformational change in the presence of HPA, concomitant with the increase in the rate of flavin reduction. Amino acid residues that are important for HPA binding and regulation of C1 activity were identified by site-directed mutagenesis. Amino acid sequence similarity analysis revealed several as yet uncharacterized flavin reductases with N- or C-terminal fusions.
Collapse
Affiliation(s)
- Anan Yuenyao
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nopphon Petchyam
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Chang CY, Lohman JR, Huang T, Michalska K, Bigelow L, Rudolf JD, Jedrzejczak R, Yan X, Ma M, Babnigg G, Joachimiak A, Phillips GN, Shen B. Structural Insights into the Free-Standing Condensation Enzyme SgcC5 Catalyzing Ester-Bond Formation in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Biochemistry 2018. [PMID: 29533601 DOI: 10.1021/acs.biochem.8b00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C-1027 is a chromoprotein enediyne antitumor antibiotic, consisting of the CagA apoprotein and the C-1027 chromophore. The C-1027 chromophore features a nine-membered enediyne core appended with three peripheral moieties, including an ( S)-3-chloro-5-hydroxy-β-tyrosine. In a convergent biosynthesis of the C-1027 chromophore, the ( S)-3-chloro-5-hydroxy-β-tyrosine moiety is appended to the enediyne core by the free-standing condensation enzyme SgcC5. Unlike canonical condensation domains from the modular nonribosomal peptide synthetases that catalyze amide-bond formation, SgcC5 catalyzes ester-bond formation, as demonstrated in vitro, between SgcC2-tethered ( S)-3-chloro-5-hydroxy-β-tyrosine and ( R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core as an acceptor substrate. Here, we report that (i) genes encoding SgcC5 homologues are widespread among both experimentally confirmed and bioinformatically predicted enediyne biosynthetic gene clusters, forming a new clade of condensation enzymes, (ii) SgcC5 shares a similar overall structure with the canonical condensation domains but forms a homodimer in solution, the active site of which is located in a cavity rather than a tunnel typically seen in condensation domains, and (iii) the catalytic histidine of SgcC5 activates the 2-hydroxyl group, while a hydrogen-bond network in SgcC5 prefers the R-enantiomer of the acceptor substrate, accounting for the regio- and stereospecific ester-bond formation between SgcC2-tethered ( S)-3-chloro-5-hydroxy-β-tyrosine and ( R)-1-phenyl-1,2-ethanediol upon acid-base catalysis. These findings expand the catalytic repertoire and reveal new insights into the structure and mechanism of condensation enzymes.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Jeremy R Lohman
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Tingting Huang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Lance Bigelow
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffrey D Rudolf
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Xiaohui Yan
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Ming Ma
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Center for Structural Genomics of Infectious Diseases , University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Center for Structural Genomics of Infectious Diseases , University of Chicago , Chicago , Illinois 60637 , United States.,Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry , Rice University , Houston , Texas 77251 , United States
| | - Ben Shen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States.,Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States.,Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
13
|
A Novel Aerobic Degradation Pathway for Thiobencarb Is Initiated by the TmoAB Two-Component Flavin Mononucleotide-Dependent Monooxygenase System in Acidovorax sp. Strain T1. Appl Environ Microbiol 2017; 83:AEM.01490-17. [PMID: 28939603 DOI: 10.1128/aem.01490-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi, and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7,129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD+ as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis.IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C-S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism.
Collapse
|
14
|
Pan G, Gao X, Fan K, Liu J, Meng B, Gao J, Wang B, Zhang C, Han H, Ai G, Chen Y, Wu D, Liu ZJ, Yang K. Structure and Function of a C-C Bond Cleaving Oxygenase in Atypical Angucycline Biosynthesis. ACS Chem Biol 2017; 12:142-152. [PMID: 28103689 DOI: 10.1021/acschembio.6b00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
C-C bond ring cleaving oxygenases represent a unique family of enzymes involved in the B ring cleavage reaction only observed in atypical angucycline biosynthesis. B ring cleavage is the key reaction leading to dramatic divergence in the final structures of atypical angucyclines. Here, we present the crystal structure of AlpJ, the first structure of this family of enzymes. AlpJ has been verified as the enzyme catalyzing C-C bond cleavage in kinamycin biosynthesis. The crystal structure of the AlpJ monomer resembles the dimeric structure of ferredoxin-like proteins. The N- and C-terminal halves of AlpJ are homologous, and both contain a putative hydrophobic substrate binding pocket in the "closed" and "open" conformations, respectively. Structural comparison of AlpJ with ActVA-Orf6 and protein-ligand docking analysis suggest that the residues including Asn60, Trp64, and Trp181 are possibly involved in substrate recognition. Site-directed mutagenesis results supported our hypothesis, as mutation of these residues led to nearly a complete loss of the activity of AlpJ. Structural analysis also revealed that AlpJ possesses an intramolecular domain-domain interface, where the residues His50 and Tyr178 form a hydrogen bond that probably stabilizes the three-dimensional structure of AlpJ. Site-directed mutagenesis showed that the two residues, His50 and Tyr178, were vital for the activity of AlpJ. Our findings shed light on the structure and catalytic mechanism of the AlpJ family of oxygenases, which presumably involves two active sites that might function in a cooperative manner.
Collapse
Affiliation(s)
- Guohui Pan
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xiaoqin Gao
- National
Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Keqiang Fan
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Junlin Liu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Bing Meng
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Jinmin Gao
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Bin Wang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Chaobo Zhang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hui Han
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Guomin Ai
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yihua Chen
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Dong Wu
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, People’s Republic of China
| | - Zhi-Jie Liu
- National
Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Institute
of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Keqian Yang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|