1
|
Madeira CA, Anselmo C, Costa JM, Bonito CA, Ferreira RJ, Santos DJVA, Wanders RJ, Vicente JB, Ventura FV, Leandro P. Functional and structural impact of 10 ACADM missense mutations on human medium chain acyl-Coa dehydrogenase. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166766. [PMID: 37257730 DOI: 10.1016/j.bbadis.2023.166766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Medium chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is associated with ACADM gene mutations, leading to an impaired function and/or structure of MCAD. Importantly, after import into the mitochondria, MCAD must incorporate a molecule of flavin adenine dinucleotide (FAD) per subunit and assemble into tetramers. However, the effect of MCAD amino acid substitutions on FAD incorporation has not been investigated. Herein, the commonest MCAD variant (p.K304E) and 11 additional rare variants (p.Y48C, p.R55G, p.A88P, p.Y133C, p.A140T, p.D143V, p.G224R, p.L238F, p.V264I, p.Y372N, and p.G377V) were functionally and structurally characterized. Half of the studied variants presented a FAD content <65 % compared to the wild-type. Most of them were recovered as tetramers, except the p.Y372N (mainly as dimers). No correlation was found between the levels of tetramers and FAD content. However, a correlation between FAD content and the cofactor's affinity, proteolytic stability, thermostability, and thermal inactivation was established. We showed that the studied amino acid changes in MCAD may alter the substrate chain-length dependence and the interaction with electron-transferring-flavoprotein (ETF) necessary for a proper functioning electron transfer thus adding additional layers of complexity to the pathological effect of ACADM missense mutations. Although the majority of the variant MCADs presented an impaired capacity to retain FAD during their synthesis, some of them were structurally rescued by cofactor supplementation, suggesting that in the mitochondrial environment the levels and activity of those variants may be dependent of FAD's availability thus contributing for the heterogeneity of the MCADD phenotype found in patients presenting the same genotype.
Collapse
Affiliation(s)
- Catarina A Madeira
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carolina Anselmo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João M Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia A Bonito
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Daniel J V A Santos
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Ronald J Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers-University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Fátima V Ventura
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
2
|
Identification of Differential Expression Genes between Volume and Pressure Overloaded Hearts Based on Bioinformatics Analysis. Genes (Basel) 2022; 13:genes13071276. [PMID: 35886059 PMCID: PMC9318830 DOI: 10.3390/genes13071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Volume overload (VO) and pressure overload (PO) are two common pathophysiological conditions associated with cardiac disease. VO, in particular, often occurs in a number of diseases, and no clinically meaningful molecular marker has yet been established. We intend to find the main differential gene expression using bioinformatics analysis. GSE97363 and GSE52796 are the two gene expression array datasets related with VO and PO, respectively. The LIMMA algorithm was used to identify differentially expressed genes (DEGs) of VO and PO. The DEGs were divided into three groups and subjected to functional enrichment analysis, which comprised GO analysis, KEGG analysis, and the protein–protein interaction (PPI) network. To validate the sequencing data, cardiomyocytes from AR and TAC mouse models were used to extract RNA for qRT-PCR. The three genes with random absolute values of LogFC and indicators of heart failure (natriuretic peptide B, NPPB) were detected: carboxylesterase 1D (CES1D), whirlin (WHRN), and WNK lysine deficient protein kinase 2 (WNK2). The DEGs in VO and PO were determined to be 2761 and 1093, respectively, in this study. Following the intersection, 305 genes were obtained, 255 of which expressed the opposing regulation and 50 of which expressed the same regulation. According to the GO and pathway enrichment studies, DEGs with opposing regulation are mostly common in fatty acid degradation, propanoate metabolism, and other signaling pathways. Finally, we used Cytoscape’s three techniques to identify six hub genes by intersecting 255 with the opposite expression and constructing a PPI network. Peroxisome proliferator-activated receptor (PPARα), acyl-CoA dehydrogenase medium chain (ACADM), patatin-like phospholipase domain containing 2 (PNPLA2), isocitrate dehydrogenase 3 (IDH3), heat shock protein family D member 1 (HSPD1), and dihydrolipoamide S-acetyltransferase (DLAT) were identified as six potential genes. Furthermore, we predict that the hub genes PPARα, ACADM, and PNPLA2 regulate VO myocardial changes via fatty acid metabolism and acyl-Coa dehydrogenase activity, and that these genes could be employed as basic biomarkers for VO diagnosis and treatment.
Collapse
|
3
|
Janeiro P, Jotta R, Ramos R, Florindo C, Ventura FV, Vilarinho L, Tavares de Almeida I, Gaspar A. Follow-up of fatty acid β-oxidation disorders in expanded newborn screening era. Eur J Pediatr 2019; 178:387-394. [PMID: 30617651 DOI: 10.1007/s00431-018-03315-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 01/25/2023]
Abstract
Fatty acid β-oxidation (FAO) disorders have a wide variety of symptoms, not usually evident between episodes of acute decompensations. Cardiac involvement is frequent, and severe ventricular arrhythmias are suspected of causing sudden death. Expanded newborn screening (ENS) for these disorders, hopefully, contribute to prevent potentially acute life-threatening events. In order to characterize acute decompensations observed in FAO-deficient cases identified by ENS, a retrospective analysis was performed, covering a period of 9 years. Demographic data, number/type of acute decompensations, treatment, and follow-up were considered. Eighty-three clinical charts, including 66 medium-chain acyl-CoA dehydrogenase deficiency (MCADD), 5 carnitine-uptake deficiency (CUD), 3 carnitine palmitoyltransferase I and II (CPT I/II) deficiency, 5 very long-chain acyl-CoA dehydrogenase deficiency (VLCADD), and 4 multiple acyl-CoA dehydrogenase deficiency (MADD) cases were reviewed. Nineteen patients had acute decompensations (1 CPT I, 1 CPT II, 3 MADD, 14 MCADD). Six patients developed symptoms previously to ENS diagnosis. Severe clinical manifestations included multiple organ failure, liver failure, heart failure, and sudden death. Long-chain FAO disorders had the highest number of decompensations per patient.Conclusion: Despite earlier diagnosis by ENS, sudden deaths were not avoided and acute decompensations with severe clinical manifestations still occur as well. What is Known: • Severe ventricular arrhythmias are suspected to cause unexpected death in FAO disorders. • Neonatal screening intends to reduce the incidence of severe metabolic crisis and death. What is New: • Acute severe decompensations occurred in FAO disorders diagnosed through neonatal screening. • Sudden deaths were not avoided by starting treatment precociously.
Collapse
Affiliation(s)
- Patrícia Janeiro
- Centro de Referência de Doenças Hereditárias do Metabolismo, Departamento de Pediatria Médica, Hospital de Santa Maria - CHULN, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal.
| | - Rita Jotta
- Serviço de Pediatria Médica, Departamento de Pediatria, Hospital de Santa Maria - CHULN, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal
| | - Ruben Ramos
- Laboratório de Metabolismos e Genética, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto Edificio F, 1649-099, Lisbon, Portugal
| | - Cristina Florindo
- Laboratório de Metabolismos e Genética, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto Edificio F, 1649-099, Lisbon, Portugal
| | - Fátima V Ventura
- Laboratório de Metabolismos e Genética, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto Edificio F, 1649-099, Lisbon, Portugal
| | - Laura Vilarinho
- Unidade de Rastreio Neonatal Metabolismo e Genética, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal
| | - Isabel Tavares de Almeida
- Laboratório de Metabolismos e Genética, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto Edificio F, 1649-099, Lisbon, Portugal
| | - Ana Gaspar
- Centro de Referência de Doenças Hereditárias do Metabolismo, Departamento de Pediatria Médica, Hospital de Santa Maria - CHULN, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal
| |
Collapse
|
4
|
Pazhang M, Younesi FS, Mehrnejad F, Najavand S, Tarinejad A, Haghi M, Rashno F, Khajeh K. Ig-like Domain in Endoglucanase Cel9A from Alicyclobacillus acidocaldarius Makes Dependent the Enzyme Stability on Calcium. Mol Biotechnol 2018; 60:698-711. [PMID: 30062637 DOI: 10.1007/s12033-018-0105-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endoglucanase Cel9A from Alicyclobacillus acidocaldarius (AaCel9A) has an Ig-like domain and the enzyme stability is dependent to calcium. In this study the effect of calcium on the structure and stability of the wild-type enzyme and the truncated form (the wild-type enzyme without Ig-like domain, AaCel9AΔN) was investigated. Fluorescence quenching results indicated that calcium increased and decreased the rigidity of the wild-type and truncated enzymes, respectively. RMSF results indicated that AaCel9A has two flexible regions (regions A and B) and deleting the Ig-like domain increased the truncated enzyme stability by decreasing the flexibility of region B probably through increasing the hydrogen bonds. Calcium contact map analysis showed that deleting the Ig-like domain decreased the calcium contacting residues and their calcium binding affinities, especially, in region B which has a role in calcium binding site in AaCel9A. Metal depletion and activity recovering as well as stability results showed that the structure and stability of the wild-type and truncated enzymes are completely dependent on and independent of calcium, respectively. Finally, one can conclude that the deletion of Ig-like domain makes AaCel9AΔN independent of calcium via decreasing the flexibility of region B through increasing the hydrogen bonds. This suggests a new role for the Ig-like domain which makes AaCel9A structure dependent on calcium.
Collapse
Affiliation(s)
- Mohammad Pazhang
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Fereshteh S Younesi
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Saeed Najavand
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Tarinejad
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mehrnaz Haghi
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Fatemeh Rashno
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Malliou F, Andreadou I, Gonzalez FJ, Lazou A, Xepapadaki E, Vallianou I, Lambrinidis G, Mikros E, Marselos M, Skaltsounis AL, Konstandi M. The olive constituent oleuropein, as a PPARα agonist, markedly reduces serum triglycerides. J Nutr Biochem 2018; 59:17-28. [PMID: 29960113 DOI: 10.1016/j.jnutbio.2018.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Oleuropein (OLE), a main constituent of olive, exhibits antioxidant and hypolipidemic effects, while it reduces the infarct size in chow- and cholesterol-fed rabbits. Peroxisome proliferator-activated receptor α (PPARα) has essential roles in the control of lipid metabolism and energy homeostasis. This study focused on the mechanisms underlying the hypolipidemic activity of OLE and, specifically, on the role of PPARα activation in the OLE-induced effect. Theoretical approach using Molecular Docking Simulations and luciferase reporter gene assay indicated that OLE is a ligand of PPARα. The effect of OLE (100 mg/kg, p.o., per day, ×6 weeks) on serum triglyceride (TG) and cholesterol levels was also assessed in adult male wild-type and Ppara-null mice. Molecular Docking Simulations, Luciferase reporter gene assay and gene expression analysis indicated that OLE is a PPARα agonist that up-regulates several PPARα target genes in the liver. This effect was associated with a significant reduction of serum TG and cholesterol levels. In contrast, OLE had no effect in Ppara-null mice, indicating a direct involvement of PPARα in the OLE-induced serum TG and cholesterol reduction. Activation of hormone-sensitive lipase in the white adipose tissue (WAT) and the liver of wild-type mice and up-regulation of several hepatic factors involved in TG uptake, transport, metabolism and clearance may also contribute in the OLE-induced TG reduction. In summary, OLE has a beneficial effect on TG homeostasis via PPARα activation. OLE also activates the hormone sensitive lipase in the WAT and liver and up-regulates several hepatic genes with essential roles in TG homeostasis.
Collapse
Affiliation(s)
- Foteini Malliou
- University of Ioannina, Faculty of Medicine, Department of Pharmacology, Ioannina GR-45110, Greece
| | - Ioanna Andreadou
- National & Kapodistrian University of Athens, Faculty of Pharmacy, Athens, Greece
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda 20892, MD, USA
| | - Antigone Lazou
- Aristotle University of Thessaloniki, School of Biology, Laboratory of Animal Physiology, Thessaloniki 54124, Greece
| | - Eva Xepapadaki
- University of Patras, School of Medicine, Department of Pharmacology, Rio, Greece
| | - Ioanna Vallianou
- Aristotle University of Thessaloniki, School of Biology, Laboratory of Animal Physiology, Thessaloniki 54124, Greece
| | - George Lambrinidis
- National & Kapodistrian University of Athens, Faculty of Pharmacy, Athens, Greece
| | - Emmanuel Mikros
- National & Kapodistrian University of Athens, Faculty of Pharmacy, Athens, Greece
| | - Marios Marselos
- University of Ioannina, Faculty of Medicine, Department of Pharmacology, Ioannina GR-45110, Greece
| | | | - Maria Konstandi
- University of Ioannina, Faculty of Medicine, Department of Pharmacology, Ioannina GR-45110, Greece.
| |
Collapse
|