1
|
Huang W, Chen W, Chen Y, Fang S, Huang T, Chang P, Chang Y. Salmonella YqiC exerts its function through an oligomeric state. Protein Sci 2023; 32:e4749. [PMID: 37555831 PMCID: PMC10503411 DOI: 10.1002/pro.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
Protein oligomerization occurs frequently both in vitro and in vivo, with specific functionalities associated with different oligomeric states. The YqiC protein from Salmonella Typhimurium forms a homotrimer through its C-terminal coiled-coil domain, and the protein is closely linked to the colonization and invasion of the bacteria to the host cells. To elucidate the importance of the oligomeric state of YqiC in vivo and its relation with bacterial infection, we mutated crucial residues in YqiC's coiled-coil region and confirmed the loss of trimer formation using chemical crosslinking and size exclusion chromatography coupled with multiple angle light scattering (SEC-MALS) techniques. The yqiC-knockout strain complemented with mutant YqiC showed significantly reduced colonization and invasion of Salmonella to host cells, demonstrating the critical role of YqiC oligomerization in bacterial pathogenesis. Furthermore, we conducted a protein-protein interaction study of YqiC using a pulled-down assay coupled with mass spectrometry analysis to investigate the protein's role in bacterial virulence. The results reveal that YqiC interacts with subunits of Complex II of the electron transport chain (SdhA and SdhB) and the β-subunit of F0 F1 -ATP synthase. These interactions suggest that YqiC may modulate the energy production of Salmonella and subsequently affect the assembly of crucial virulence factors, such as flagella. Overall, our findings provide new insights into the molecular mechanisms of YqiC's role in S. Typhimurium pathogenesis and suggest potential therapeutic targets for bacterial infections.
Collapse
Affiliation(s)
- Wei‐Chun Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Wai‐Ting Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yueh‐Chen Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Shiuh‐Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
- Department of Pediatrics, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Master Program for Clinical Genomics and Proteomics, College of PharmacyTaipei Medical UniversityTaipeiTaiwan
| | - Tzu‐Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Pei‐Ru Chang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
- Department of Pediatrics, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yu‐Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- International PhD Program in Cell Therapy and Regenerative Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
2
|
Kumar MS, Stallworth KM, Murthy AC, Lim SM, Li N, Jain A, Munro JB, Fawzi NL, Lagier-Tourenne C, Bosco DA. Interactions between FUS and the C-terminal Domain of Nup62 are Sufficient for their Co-phase Separation into Amorphous Assemblies. J Mol Biol 2023; 435:167972. [PMID: 36690069 PMCID: PMC10329203 DOI: 10.1016/j.jmb.2023.167972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Deficient nucleocytoplasmic transport is emerging as a pathogenic feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), including in ALS caused by mutations in Fused in Sarcoma (FUS). Recently, both wild-type and ALS-linked mutant FUS were shown to directly interact with the phenylalanine-glycine (FG)-rich nucleoporin 62 (Nup62) protein, where FUS WT/ Nup62 interactions were enriched within the nucleus but ALS-linked mutant FUS/ Nup62 interactions were enriched within the cytoplasm of cells. Nup62 is a central channel Nup that has a prominent role in forming the selectivity filter within the nuclear pore complex and in regulating effective nucleocytoplasmic transport. Under conditions where FUS phase separates into liquid droplets in vitro, the addition of Nup62 caused the synergistic formation of amorphous assemblies containing both FUS and Nup62. Here, we examined the molecular determinants of this process using recombinant FUS and Nup62 proteins and biochemical approaches. We demonstrate that the structured C-terminal domain of Nup62 containing an alpha-helical coiled-coil region plays a dominant role in binding FUS and is sufficient for inducing the formation of FUS/Nup62 amorphous assemblies. In contrast, the natively unstructured, F/G repeat-rich N-terminal domain of Nup62 modestly contributed to FUS/Nup62 phase separation behavior. Expression of individual Nup62 domain constructs in human cells confirmed that the Nup62 C-terminal domain is essential for localization of the protein to the nuclear envelope. Our results raise the possibility that interactions between FUS and the C-terminal domain of Nup62 can influence the function of Nup62 under physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Meenakshi Sundaram Kumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, MA 01605, USA; Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karly M Stallworth
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, MA 01605, USA
| | - Anastasia C Murthy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Su Min Lim
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nan Li
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aastha Jain
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James B Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, MA 01605, USA.
| |
Collapse
|
3
|
Madheshiya PK, Shukla E, Singh J, Bawaria S, Ansari MY, Chauhan R. Insights into the role of Nup62 and Nup93 in assembling cytoplasmic ring and central transport channel of the nuclear pore complex. Mol Biol Cell 2022; 33:ar139. [PMID: 36222862 PMCID: PMC9727814 DOI: 10.1091/mbc.e22-01-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nuclear pore complex (NPC) is a highly modular assembly of 34 distinct nucleoporins (Nups) to form a versatile transport channel between the nucleus and the cytoplasm. Among them, Nup62 is known as an essential component for nuclear transport, Nup93 for proper nuclear envelope assembly. These Nups constitute various NPC subcomplexes such as the central transport channel (CTC), the cytoplasmic ring (CR), and the inner ring (IR). However, how they play their roles in NPC assembly and transport activity is not clear. Here we delineated the interacting regions and conducted biochemical reconstitution and structural characterization of the mammalian CR complex to reveal its intrinsic dynamic behavior and a distinct "4"-shaped architecture resembling the CTC complex. Our in vitro reconstitution data demonstrate that the Nup62 coiled-coil domain is critical to form both Nup62322-525 •Nup88517-742 and Nup62322-525•Nup88517-742•Nup214693-926 heterotrimers and both can bind to Nup931-150. We therefore propose that Nup93 acts as a "sensor" to bind to Nup62 shared heterotrimers including the Nup62•Nup54 heterotrimer of the CTC, which was not shown previously to be an interacting partner. Altogether, our biochemical study suggests that Nup62 via its coiled-coil domain is central to form compositionally distinct yet structurally similar heterotrimers and Nup93 binds these diverse heterotrimers nonselectively.
Collapse
Affiliation(s)
| | - Ekta Shukla
- National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Jyotsana Singh
- National Centre for Cell Science, Pune 411007, Maharashtra, India
| | | | | | - Radha Chauhan
- National Centre for Cell Science, Pune 411007, Maharashtra, India,*Address correspondence to: Radha Chauhan ()
| |
Collapse
|
4
|
Gleixner AM, Verdone BM, Otte CG, Anderson EN, Ramesh N, Shapiro OR, Gale JR, Mauna JC, Mann JR, Copley KE, Daley EL, Ortega JA, Cicardi ME, Kiskinis E, Kofler J, Pandey UB, Trotti D, Donnelly CJ. NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun 2022; 13:3380. [PMID: 35697676 PMCID: PMC9192689 DOI: 10.1038/s41467-022-31098-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/03/2022] [Indexed: 01/12/2023] Open
Abstract
A G4C2 hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of ALS and FTLD (C9-ALS/FTLD) with cytoplasmic TDP-43 inclusions observed in regions of neurodegeneration. The accumulation of repetitive RNAs and dipeptide repeat protein (DPR) are two proposed mechanisms of toxicity in C9-ALS/FTLD and linked to impaired nucleocytoplasmic transport. Nucleocytoplasmic transport is regulated by the phenylalanine-glycine nucleoporins (FG nups) that comprise the nuclear pore complex (NPC) permeability barrier. However, the relationship between FG nups and TDP-43 pathology remains elusive. Our studies show that nuclear depletion and cytoplasmic mislocalization of one FG nup, NUP62, is linked to TDP-43 mislocalization in C9-ALS/FTLD iPSC neurons. Poly-glycine arginine (GR) DPR accumulation initiates the formation of cytoplasmic RNA granules that recruit NUP62 and TDP-43. Cytoplasmic NUP62 and TDP-43 interactions promotes their insolubility and NUP62:TDP-43 inclusions are frequently found in C9orf72 ALS/FTLD as well as sporadic ALS/FTLD postmortem CNS tissue. Our findings indicate NUP62 cytoplasmic mislocalization contributes to TDP-43 proteinopathy in ALS/FTLD.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Brandie Morris Verdone
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charlton G Otte
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Olivia R Shapiro
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jacob R Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katie E Copley
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Elizabeth L Daley
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Juan A Ortega
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Maria Elena Cicardi
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Kofler
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Udai B Pandey
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davide Trotti
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Abstract
Dominant missense mutations in RanBP2/Nup358 cause Acute Necrotizing Encephalopathy (ANE), a pediatric disease where seemingly healthy individuals develop a cytokine storm that is restricted to the central nervous system in response to viral infection. Untreated, this condition leads to seizures, coma, long-term neurological damage and a high rate of mortality. The exact mechanism by which RanBP2 mutations contribute to the development of ANE remains elusive. In November 2021, a number of clinicians and basic scientists presented their work on this disease and on the interactions between RanBP2/Nup358, viral infections, the innate immune response and other cellular processes.
Collapse
Affiliation(s)
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital, and the Department of Women and Children's Health, King's College London, London, UK
| | - Kiran T Thakur
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York
| |
Collapse
|
6
|
Danilov LG, Moskalenko SE, Matveenko AG, Sukhanova XV, Belousov MV, Zhouravleva GA, Bondarev SA. The Human NUP58 Nucleoporin Can Form Amyloids In Vitro and In Vivo. Biomedicines 2021; 9:biomedicines9101451. [PMID: 34680573 PMCID: PMC8533070 DOI: 10.3390/biomedicines9101451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Amyloids are fibrillar protein aggregates with a cross-β structure and unusual features, including high resistance to detergent or protease treatment. More than two hundred different proteins with amyloid or amyloid-like properties are already known. Several examples of nucleoporins (e.g., yeast Nup49, Nup100, Nup116, and human NUP153) are supposed to form amyloid fibrils. In this study, we demonstrated an ability of the human NUP58 nucleoporin to form amyloid aggregates in vivo and in vitro. Moreover, we found two forms of NUP58 aggregates: oligomers and polymers stabilized by disulfide bonds. Bioinformatic analysis revealed that all known orthologs of this protein are potential amyloids which possess several regions with conserved ability to aggregation. The biological role of nucleoporin amyloid formation is debatable. We suggest that it is a rather abnormal process, which is characteristic for many proteins implicated in phase separation.
Collapse
Affiliation(s)
- Lavrentii G. Danilov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (L.G.D.); (S.E.M.); (A.G.M.); (X.V.S.); (M.V.B.)
| | - Svetlana E. Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (L.G.D.); (S.E.M.); (A.G.M.); (X.V.S.); (M.V.B.)
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Andrew G. Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (L.G.D.); (S.E.M.); (A.G.M.); (X.V.S.); (M.V.B.)
| | - Xenia V. Sukhanova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (L.G.D.); (S.E.M.); (A.G.M.); (X.V.S.); (M.V.B.)
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (L.G.D.); (S.E.M.); (A.G.M.); (X.V.S.); (M.V.B.)
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (L.G.D.); (S.E.M.); (A.G.M.); (X.V.S.); (M.V.B.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: or (G.A.Z.); or (S.A.B.)
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (L.G.D.); (S.E.M.); (A.G.M.); (X.V.S.); (M.V.B.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: or (G.A.Z.); or (S.A.B.)
| |
Collapse
|
7
|
Sonawane PJ, S Dewangan P, Madheshiya PK, Chopra K, Kumar M, Niranjan S, Ansari MY, Singh J, Bawaria S, Banerjee M, Chauhan R. Molecular and structural analysis of central transport channel in complex with Nup93 of nuclear pore complex. Protein Sci 2020; 29:2510-2527. [PMID: 33085133 DOI: 10.1002/pro.3983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
The central transport channel (CTC) of nuclear pore complexes (NPCs) is made up of three nucleoporins Nup62, Nup58 and Nup54. In which manner and capacity, these nucleoporins form the CTC, is not yet clear. We explored the CTC Nups from various species and observed that distinct biochemical characteristics of CTC Nups are evolutionarily conserved. Moreover, comparative biochemical analysis of CTC complexes showed various stoichiometric combinations of Nup62, Nup54 and Nup58 coexisting together. We observed the conserved amino-terminal domain of mammalian Nup93 is crucial for the anchorage of CTC and its localization to NPCs. We could reconstitute and purify mammalian CTC·Nup93 quaternary complex by co-expressing full length or N-terminal domain of Nup93 along with CTC complex. Further, we characterized CTC·Nup93 complex using small angle X-ray scattering and electron microscopy that revealed a "V" shape of CTC·Nup93 complex. Overall, this study demonstrated for the first time evolutionarily conserved plasticity and stoichiometric diversity in CTC Nups.
Collapse
Affiliation(s)
- Parshuram J Sonawane
- National Center for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | - Pravin S Dewangan
- National Center for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | | | - Kriti Chopra
- National Center for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | - Mohit Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Sangeeta Niranjan
- National Center for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | - Mohammed Yousuf Ansari
- National Center for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | - Jyotsana Singh
- National Center for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | - Shrankhla Bawaria
- National Center for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Radha Chauhan
- National Center for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| |
Collapse
|
8
|
Shukla E, Chauhan R. Host-HIV-1 Interactome: A Quest for Novel Therapeutic Intervention. Cells 2019; 8:cells8101155. [PMID: 31569640 PMCID: PMC6830350 DOI: 10.3390/cells8101155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The complex nature and structure of the human immunodeficiency virus has rendered the cure for HIV infections elusive. The advances in antiretroviral treatment regimes and the development of highly advanced anti-retroviral therapy, which primarily targets the HIV enzymes, have dramatically changed the face of the HIV epidemic worldwide. Despite this remarkable progress, patients treated with these drugs often witness inadequate efficacy, compound toxicity and non-HIV complications. Considering the limited inventory of druggable HIV proteins and their susceptibility to develop drug resistance, recent attempts are focussed on targeting HIV-host interactomes that are essential for viral reproduction. Noticeably, unlike other viruses, HIV subverts the host nuclear pore complex to enter into and exit through the nucleus. Emerging evidence suggests a crucial role of interactions between HIV-1 proteins and host nucleoporins that underlie the import of the pre-integration complex into the nucleus and export of viral RNAs into the cytoplasm during viral replication. Nevertheless, the interaction of HIV-1 with nucleoporins has been poorly described and the role of nucleoporins during nucleocytoplasmic transport of HIV-1 still remains unclear. In this review, we highlight the advances and challenges in developing a more effective antiviral arsenal by exploring critical host-HIV interactions with a special focus on nuclear pore complex (NPC) and nucleoporins.
Collapse
Affiliation(s)
- Ekta Shukla
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| | - Radha Chauhan
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| |
Collapse
|
9
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
10
|
Chopra K, Bawaria S, Chauhan R. Evolutionary divergence of the nuclear pore complex from fungi to metazoans. Protein Sci 2018; 28:571-586. [PMID: 30488506 PMCID: PMC6371224 DOI: 10.1002/pro.3558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
Nuclear pore complex (NPC) is the largest multimeric protein assembly of the eukaryotic cell, which mediates the nucleocytoplasmic transport. The constituent proteins of this assembly (nucleoporins) are present in varying copy numbers to give a size from ~ 60 MDa (yeast) to 112 MDa (human) and share common ancestry with other membrane‐associated complexes such as COPI/COPII and thus share the same structural folds. However, the nucleoporins across species exhibit very low percentage sequence similarity and this reflects in their distinct secondary structure and domain organization. We employed thorough sequence and phylogenetic analysis guided from structure‐based alignments of all the nucleoporins from fungi to metazoans to understand the evolution of NPC. Through evolutionary pressure analysis on various nucleoporins, we deduced that these proteins are under differential selection pressure and hence the homologous interacting partners do not complement each other in the in vitro pull‐down assay. The super tree analysis of all nucleoporins taken together illustrates divergent evolution of nucleoporins and notably, the degree of divergence is more apparent in higher order organisms as compared to lower species. Overall, our results support the hypothesis that the protein–protein interactions in such large multimeric assemblies are species specific in nature and hence their structure and function should also be studied in an organism‐specific manner.
Collapse
Affiliation(s)
- Kriti Chopra
- National Center for Cell Science, S.P. Pune University, Pune, 411007, Maharashtra, India
| | - Shrankhla Bawaria
- National Center for Cell Science, S.P. Pune University, Pune, 411007, Maharashtra, India
| | - Radha Chauhan
- National Center for Cell Science, S.P. Pune University, Pune, 411007, Maharashtra, India
| |
Collapse
|
11
|
Sandanaraj BS, Reddy MM, Bhandari PJ, Kumar S, Aswal VK. Rational Design of Supramolecular Dynamic Protein Assemblies by Using a Micelle-Assisted Activity-Based Protein-Labeling Technology. Chemistry 2018; 24:16085-16096. [DOI: 10.1002/chem.201802824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Britto S. Sandanaraj
- Department of Chemistry & Biology; Indian Institute of Science Education and Research (IISER); Pune 411 008 India
| | - Mullapudi Mohan Reddy
- Department of Chemistry & Biology; Indian Institute of Science Education and Research (IISER); Pune 411 008 India
| | | | - Sugam Kumar
- Solid State Physics Division; Bhabha Atomic Research Centre (BARC); Mumbai 400085 India
| | - Vinod K. Aswal
- Solid State Physics Division; Bhabha Atomic Research Centre (BARC); Mumbai 400085 India
| |
Collapse
|