1
|
Gong K, Wang M, Duan Q, Li G, Yong D, Ren C, Li Y, Zhang Q, Wang Z, Sun T, Zhang H, Tu Q, Wu C, Fu J, Li A, Song C, Zhang Y, Li R. High-yield production of FK228 and new derivatives in a Burkholderia chassis. Metab Eng 2023; 75:131-142. [PMID: 36528227 DOI: 10.1016/j.ymben.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
FK228 (romidepsin) is the only natural histone deacetylases (HDACs) inhibitor approved by FDA to treat cutaneous and peripheral T-cell lymphoma. However, the limited supply and severe cardiotoxicity of FK228 underscore the importance to develop an effective synthetic biology platform for the manufacturing and fine-tuning of this drug lead. In this work, we constructed a Burkholderia chassis for the high-yield production of FK228-family (unnatural) natural products. By virtue of the optimized Burkholderia-specific recombineering system, the biosynthetic gene cluster (BGC) encoding the FK228-like skeleton thailandepsins (tdp) in Burkholderia thailandensis E264 was replaced with an attB integration site to afford the basal chassis KOGC1. The tdp BGC directly captured from E264 was hybridized with the FK228-encoding BGC (dep) using the versatile Red/ET technology. The hybrid BGC (tdp-dep) was integrated into the attB site of KOGC1, resulting in the heterologous expression of FK228. Remarkably, the titer reached 581 mg/L, which is 30-fold higher than that of native producer Chromobacterium violaceum No. 968. This success encouraged us to further engineer the NRPS modules 4 or 6 of hybrid tdp-dep BGC by domain units swapping strategy, and eight new FK228 derivatives (1-8) varying in the composition of amino acids were generated. Especially, the titers of 2 and 3 in KOGC1 were up to 985 mg/L and 453 mg/L, respectively. 2 and 3 displayed stronger cytotoxic activity than FK228. All in all, this work established a robust platform to produce FK228 and its new derivatives in sufficient quantities for anticancer drug development.
Collapse
Affiliation(s)
- Kai Gong
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Maoqin Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qiong Duan
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, Qingdao University, Qingdao, Shandong, China
| | - Daojing Yong
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Cailing Ren
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Yue Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qijun Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Zongjie Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Tao Sun
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Huanyun Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qiang Tu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China; Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changsheng Wu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Aiying Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Chaoyi Song
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China; Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Ruijuan Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
3
|
Huang JJ, Wei T, Ye ZW, Zheng QW, Jiang BH, Han WF, Ye AQ, Han PY, Guo LQ, Lin JF. Microbial Cell Factory of Baccatin III Preparation in Escherichia coli by Increasing DBAT Thermostability and in vivo Acetyl-CoA Supply. Front Microbiol 2022; 12:803490. [PMID: 35095813 PMCID: PMC8790024 DOI: 10.3389/fmicb.2021.803490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Given the rapid development of genome mining in this decade, the substrate channel of paclitaxel might be identified in the near future. A robust microbial cell factory with gene dbat, encoding a key rate-limiting enzyme 10-deacetylbaccatin III-10-O-transferase (DBAT) in paclitaxel biosynthesis to synthesize the precursor baccatin III, will lay out a promising foundation for paclitaxel de novo synthesis. Here, we integrated gene dbat into the wild-type Escherichia coli BW25113 to construct strain BWD01. Yet, it was relatively unstable in baccatin III synthesis. Mutant gene dbat S189V with improved thermostability was screened out from a semi-rational mutation library of DBAT. When it was over-expressed in an engineered strain N05 with improved acetyl-CoA generation, combined with carbon source optimization of fermentation engineering, the production level of baccatin III was significantly increased. Using this combination, integrated strain N05S01 with mutant dbat S189V achieved a 10.50-fold increase in baccatin III production compared with original strain BWD01. Our findings suggest that the combination of protein engineering and metabolic engineering will become a promising strategy for paclitaxel production.
Collapse
Affiliation(s)
- Jia-jun Huang
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-wei Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qian-wang Zheng
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Bing-hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Wen-feng Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - An-qi Ye
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Pei-yun Han
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Li-qiong Guo
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jun-fang Lin
- Department of Bioengineering, College of Food Science, Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
4
|
Hwang S, Lee N, Cho S, Palsson B, Cho BK. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Front Mol Biosci 2020; 7:87. [PMID: 32500080 PMCID: PMC7242659 DOI: 10.3389/fmolb.2020.00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
In nature, various enzymes govern diverse biochemical reactions through their specific three-dimensional structures, which have been harnessed to produce many useful bioactive compounds including clinical agents and commodity chemicals. Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are particularly unique multifunctional enzymes that display modular organization. Individual modules incorporate their own specific substrates and collaborate to assemble complex polyketides or non-ribosomal polypeptides in a linear fashion. Due to the modular properties of PKSs and NRPSs, they have been attractive rational engineering targets for novel chemical production through the predictable modification of each moiety of the complex chemical through engineering of the cognate module. Thus, individual reactions of each module could be separated as a retro-biosynthetic biopart and repurposed to new biosynthetic pathways for the production of biofuels or commodity chemicals. Despite these potentials, repurposing attempts have often failed owing to impaired catalytic activity or the production of unintended products due to incompatible protein–protein interactions between the modules and structural perturbation of the enzyme. Recent advances in the structural, computational, and synthetic tools provide more opportunities for successful repurposing. In this review, we focused on the representative strategies and examples for the repurposing of modular PKSs and NRPSs, along with their advantages and current limitations. Thereafter, synthetic biology tools and perspectives were suggested for potential further advancement, including the rational and large-scale high-throughput approaches. Ultimately, the potential diverse reactions from modular PKSs and NRPSs would be leveraged to expand the reservoir of useful chemicals.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Namil Lee
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
5
|
Sullivan SA, Nawarathne IN, Walker KD. CoA recycling by a benzoate coenzyme A ligase in cascade reactions with aroyltransferases to biocatalyze paclitaxel analogs. Arch Biochem Biophys 2020; 683:108276. [PMID: 31978400 DOI: 10.1016/j.abb.2020.108276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
A Pseudomonas CoA ligase (BadA) biocatalyzed aroyl CoA thioesters used by a downstream N-benzoyltransferase (NDTNBT) in a cascade reaction made aroyl analogs of the anticancer drug paclitaxel. BadA kept the high-cost aroyl CoA substrates at saturation for the downstream NDTNBT by recycling CoA when it was added as the limiting reactant. A deacylated taxane substrate N-debenzoyl-2'-deoxypaclitaxel was converted to its benzoylated product at a higher yield, compared to the converted yield in assays in which the BadA ligase chemistry was omitted, and benzoyl CoA was added as a cosubstrate. The resulting benzoylated product 2'-deoxypaclitaxel was made at 196% over the theoretical yield of product that could be made from the CoA added at 50 μM, and the cosubstrates benzoic acid (100 μM), and N-debenzoyl-2'-deoxypaclitaxel (500 μM) added in excess. In addition, a 2-O-benzoyltransferase (mTBT) was incubated with BadA, aroyl acids, CoA, a 2-O-debenzoylated taxane substrate, and cofactors under the CoA-recycling conditions established for the NDTNBT/BadA cascade. The mTBT/BadA combination also made various 2-O-aroylated products that could potentially function as next-generation baccatin III compounds. These ligase/benzoyltransferase cascade reactions show the feasibility of recycling aroyl CoA thioesters in vitro to make bioactive acyl analogs of paclitaxel precursors.
Collapse
Affiliation(s)
- Sean A Sullivan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kevin D Walker
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Thornburg CK, Walter T, Walker KD. Biocatalysis of a Paclitaxel Analogue: Conversion of Baccatin III to N-Debenzoyl-N-(2-furoyl)paclitaxel and Characterization of an Amino Phenylpropanoyl CoA Transferase. Biochemistry 2017; 56:5920-5930. [DOI: 10.1021/acs.biochem.7b00912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chelsea K. Thornburg
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tyler Walter
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kevin D. Walker
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|