1
|
Cheng X, Chen R, Zhou T, Zhang B, Li Z, Gao M, Huang Y, Liu H, Su Z. Leveraging the multivalent p53 peptide-MdmX interaction to guide the improvement of small molecule inhibitors. Nat Commun 2022; 13:1087. [PMID: 35228542 PMCID: PMC8885691 DOI: 10.1038/s41467-022-28721-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Overexpressed Mdm2 and its 7homolog MdmX impair p53 activity in many cancers. Small molecules mimicking a p53 peptide can effectively inhibit Mdm2 but not MdmX. Here, we show a strategy for improving lead compounds for Mdm2 and MdmX inhibition based on the multivalency of the p53 peptide. Crystal structures of MdmX complexed with nutlin-3a, a strong Mdm2 inhibitor but a weak one for MdmX, reveal that nutlin-3a fits into the ligand binding pocket of MdmX mimicking the p53 peptide. However, due to distinct flexibility around the MdmX ligand binding pocket, the structures are missing many important intermolecular interactions that exist in the MdmX/p53 peptide and Mdm2/nultin-3a complexes. By targeting these flexible regions, we identify allosteric and additive fragments that enhance the binding affinity of nutlin-3a for MdmX, leading to potent Mdm2/MdmX inhibitors with anticancer activity. Our work provides a practical approach to drug design for signal transduction therapy. Peptide fragments derived from the interfaces of protein-protein interactions (PPIs) provide useful templates for designing small molecule PPI inhibitors. Here, the authors utilize the multivalency of an MdmX-binding p53 peptide to develop a weak inhibitor of MdmX into potent Mdm2/MdmX inhibitors.
Collapse
|
2
|
Yang Y, Dong Z, Hu H, Peng J, Sheng Y, Tong Y, Yuan S, Li Z, Yang J, Wells T, Qu Y, Farrell NP, Liu Y. The facile and visualizable identification of broad-spectrum inhibitors of MDM2/p53 using co-expressed protein complexes. Analyst 2019; 144:3773-3781. [PMID: 31089613 DOI: 10.1039/c9an00350a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MDM2 is a well-known oncoprotein overexpressed in a variety of cancers, and the identification of inhibitors that disrupt the MDM2/p53 interaction is of great interest in anticancer drug development. Here we designed a platform for the facile and visualizable identification of inhibitors of MDM2 using co-expressed protein complexes of MDM2/p53. A hexahistidine-tag on MDM2 allows the binding of the protein complex to the Ni-NTA affinity resin, while the fluorescent protein fused to p53 enables the direct visualization of the interaction of p53 with MDM2. Hence, the inhibition of the MDM2/p53 interaction can be observed with the naked eye. The assay can be set up by directly loading cell lysate to the Ni-NTA affinity resin, and no chemical modification of proteins is needed. In addition to the qualitative analyses, the binding affinity of inhibitors to the MDM2 protein can be quantified by fluorescence titration. The applications of this system have been verified using small molecules and peptide inhibitors. As a proof of concept, we screened a small library using this platform. Interestingly, two types of novel inhibitors of MDM2, including cyclohexyl-triphenylamine derivatives and platinum complexes, were identified and their binding affinities were obtained. Quantitative measurements show that these new types of inhibitors demonstrate a high binding affinity (up to Kd = 51.9 nM) to MDM2.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhiqiang Dong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hongze Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Junhui Peng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yaping Sheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yang Tong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jiaxiang Yang
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Thomas Wells
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284-2006, USA
| | - Yun Qu
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284-2006, USA
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284-2006, USA
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
3
|
Pi N, Gao M, Cheng X, Liu H, Kuang Z, Yang Z, Yang J, Zhang B, Chen Y, Liu S, Huang Y, Su Z. Recombinant Butelase-Mediated Cyclization of the p53-Binding Domain of the Oncoprotein MdmX-Stabilized Protein Conformation as a Promising Model for Structural Investigation. Biochemistry 2019; 58:3005-3015. [DOI: 10.1021/acs.biochem.9b00263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ni Pi
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiyao Cheng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- Wuhan Amersino Biodevelop Inc., B1-Building, Biolake Park, Wuhan 430075, China
| | - Huili Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071 China
| | - Zhengkun Kuang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Zixin Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Bailing Zhang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yao Chen
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- Wuhan Amersino Biodevelop Inc., B1-Building, Biolake Park, Wuhan 430075, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology and National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- Wuhan Amersino Biodevelop Inc., B1-Building, Biolake Park, Wuhan 430075, China
| |
Collapse
|
4
|
Stefaniak J, Lewis AM, Conole D, Galan SRG, Bataille CJR, Wynne GM, Castaldi MP, Lundbäck T, Russell AJ, Huber KVM. Chemical Instability and Promiscuity of Arylmethylidenepyrazolinone-Based MDMX Inhibitors. ACS Chem Biol 2018; 13:2849-2854. [PMID: 30216042 PMCID: PMC6198280 DOI: 10.1021/acschembio.8b00665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeting the protein-protein interaction between p53 and MDM2/MDMX (MDM4) represents an attractive anticancer strategy for the treatment of p53-competent tumors. Several selective and potent MDM2 inhibitors have been developed and entered the clinic; however, the repertoire of MDMX antagonists is still limited. The arylmethylidenepyrazolinone SJ-172550 has been reported as a selective MDMX antagonist; yet, uncertainties about its mechanism of action have raised doubts about its use as a chemical probe. Here, we show that, in addition to its unclear mode of action, SJ-172550 is unstable in aqueous buffers, giving rise to side products of unknown biological activity. Using an SJ-172550-derived affinity probe, we observed promiscuous binding to cellular proteins whereas cellular thermal shift assays did not reveal a stabilizing effect on MDMX. Overall, our results raise further questions about the interpretation of data using SJ-172550 and related compounds to investigate cellular phenotypes.
Collapse
Affiliation(s)
- Jakub Stefaniak
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Andrew M. Lewis
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Conole
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Sébastien R. G. Galan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Carole J. R. Bataille
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Graham M. Wynne
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - M. Paola Castaldi
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Thomas Lundbäck
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Angela J. Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kilian V. M. Huber
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Moscetti I, Cannistraro S, Bizzarri AR. Surface Plasmon Resonance Sensing of Biorecognition Interactions within the Tumor Suppressor p53 Network. SENSORS 2017; 17:s17112680. [PMID: 29156626 PMCID: PMC5713020 DOI: 10.3390/s17112680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022]
Abstract
Surface Plasmon Resonance (SPR) is a powerful technique to study the kinetics of biomolecules undergoing biorecognition processes, particularly suited for protein-protein interactions of biomedical interest. The potentiality of SPR was exploited to sense the interactions occurring within the network of the tumor suppressor p53, which is crucial for maintaining genome integrity and whose function is inactivated, mainly by down regulation or by mutation, in the majority of human tumors. This study includes p53 down-regulators, p53 mutants and also the p53 family members, p63 and p73, which could vicariate p53 protective function. Furthermore, the application of SPR was extended to sense the interaction of p53 with anti-cancer drugs, which might restore p53 function. An extended review of previous published work and unpublished kinetic data is provided, dealing with the interaction between the p53 family members, or their mutants and two anticancer molecules, Azurin and its cell-penetrating peptide, p28. All the kinetic results are discussed in connection with those obtained by a complementary approach operating at the single molecule level, namely Atomic Force Spectroscopy and the related literature data. The overview of the SPR kinetic results may significantly contribute to a deeper understanding of the interactions within p53 network, also in the perspective of designing suitable anticancer drugs.
Collapse
Affiliation(s)
- Ilaria Moscetti
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | - Salvatore Cannistraro
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| | - Anna Rita Bizzarri
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| |
Collapse
|
6
|
Gao M, Zhou J, Su Z, Huang Y. Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein-protein interactions and cancer therapy. Protein Sci 2017; 26:2334-2341. [PMID: 28960574 DOI: 10.1002/pro.3310] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022]
Abstract
Azurin secreted by Pseudomonas aeruginosa is an anticancer bacteriocin, which preferentially enters human cancer cells and induces apoptosis or growth inhibition. It turns out that azurin is a multi-target anticancer agent interfering in the p53 signaling pathway and the non-receptor tyrosine kinases signaling pathway. This suggests that azurin exerts its anticancer activity by interacting with multiple targets and interfering in multiple steps in disease progression. Therefore, azurin could overcome resistance to therapy. Besides azurin, putative bacteriocins that possess functional properties similar to those of azurin have been identified in more bacteria species. A systematic investigation on the anticancer mechanisms of azurin and the azurin-like bacteriocins will provide more and better options in cancer therapy. In this review, we summarize how azurin and the derived peptides hijack key cellular regulators or cell surface receptors to remodel the cellular signaling networks. In particular, we highlight the necessity of determining the structure of azurin/p53 complex and investigating the influence of post-translational modifications on interactions between azurin and p53. Therapeutic applications of azurin and derived peptides are also discussed.
Collapse
Affiliation(s)
- Meng Gao
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Jingjing Zhou
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| |
Collapse
|
7
|
Qin L, Liu H, Chen R, Zhou J, Cheng X, Chen Y, Huang Y, Su Z. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity. Biochemistry 2017; 56:5943-5954. [DOI: 10.1021/acs.biochem.7b00903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lingyun Qin
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Huili Liu
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Chinese Academy of Science, Wuhan 430071, China
| | - Rong Chen
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Jingjing Zhou
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiyao Cheng
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yao Chen
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|