1
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
2
|
Paul GC, Sarkar P, Sarmah A, Shaw P, Maity S, Mukherjee C. A combined experimental and theoretical study on a single, unsupported oxo-bridged Mn(III,III) dimer coordinated to two iminobenzosemiquinone π-radical anions. Dalton Trans 2021; 50:8768-8775. [PMID: 34085670 DOI: 10.1039/d1dt00489a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand H2LAP comprises a non-innocent 2-aminophenol unit and an innocent bis(pyridin-2-ylmethyl)amine unit. The ligand, upon reaction with an equivalent amount of Mn(ClO4)2·6H2O in the presence of Et3N under air in MeOH, provided a mono(oxo)-bridged dinuclear Mn2 complex ({[(LISQ)MnIII-O-MnIII(LISQ)][(ClO4)]2}; 1). X-ray crystal structure analysis of complex 1 revealed that in the dicationic unit, the physical oxidation state of each Mn ion was +III and the 2-aminophenol unit of ligand H2LAP was in its one-electron oxidized iminobenzosemiquinone form. 1H-NMR measurement of complex 1 confirmed that the complex acquired a diamagnetic ground state (St = 0). Thus, antiferromagnetic couplings among the paramagnetic centers were realized. The UV-Vis-NIR spectrum of complex 1 was consisted of ligand-to-metal charge-transfer transitions in the visible region, while ligand-to-metal and metal-to-ligand charge-transfer transitions were noticed in the near-infrared region due to the presence of iminobenzosemiquinone radical units. The cyclic voltammogram of the complex showed three one-electron oxidation waves and two one-electron reduction waves. While the first two oxidation processes were metal-based, the two successive reductions were ligand-centered. DFT-based theoretical studies confirmed the assignment.
Collapse
Affiliation(s)
- Ganesh Chandra Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India. and Department of Chemistry, ICFAI Science School, ICFAI University Tripura, Agartala, 799210, Tripura(W), India
| | - Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Amrit Sarmah
- Department of Molecular Modelling, Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic and Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Prantick Shaw
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata, 700103, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|