1
|
Jiang Y. Photosynthetic Bacteria: Light-Responsive Biomaterials for Anti-Tumor Photodynamic Therapy. Int J Nanomedicine 2025; 20:465-482. [PMID: 39811429 PMCID: PMC11730521 DOI: 10.2147/ijn.s500314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Photodynamic therapy (PDT) is a promising noninvasive tumor treatment modality that relies on generating reactive oxygen species (ROS) and requires an adequate oxygen supply to the target tissue. However, hypoxia is a common feature of solid tumors and profoundly restricts the anti-tumor efficacy of PDT. In recent years, scholars have focused on exploring nanomaterial-based strategies for oxygen supplementation and integrating non-oxygen-consuming treatment approaches to overcome the hypoxic limitations of PDT. Some scholars have harnessed the photosynthetic oxygen production of cyanobacteria under light irradiation to overcome tumor hypoxia and engineered them as carriers of photosensitizers instead of inorganic nanomaterials, resulting in photosynthetic bacteria (PSB) attracting significant attention. Recent studies have shown that light-triggered PSB can exhibit additional properties, such as photosynthetic hydrogen production, ROS generation, and photothermal conversion, facilitating their use as promising light-responsive biomaterials for enhancing the anti-tumor efficacy of PDT. Therefore, understanding PSB can provide new insights and ideas for future research. This review mainly introduces the characteristics of PSB and recent research on light-triggered PSB in anti-tumor PDT to enrich our knowledge in this area. Finally, the challenges and prospects of using PSB to enhance the anti-tumor efficacy of PDT were also discussed.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Rehabilitation Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
3
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Slonimskiy YB, Egorkin NA, Friedrich T, Maksimov EG, Sluchanko NN. Microalgal protein AstaP is a potent carotenoid solubilizer and delivery module with a broad carotenoid binding repertoire. FEBS J 2021; 289:999-1022. [PMID: 34582628 DOI: 10.1111/febs.16215] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, β-carotene, that is, carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoform, while its rather minimalistic mass (~ 20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid binding repertoire.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Berlin, Germany
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Abstract
Oxygenic photosynthetic organisms have evolved a multitude of mechanisms for protection against high-light stress. IsiA, a chlorophyll a-binding cyanobacterial protein, serves as an accessory antenna complex for photosystem I. Intriguingly, IsiA can also function as an independent pigment protein complex in the thylakoid membrane and facilitate the dissipation of excess energy, providing photoprotection. The molecular basis of the IsiA-mediated excitation quenching mechanism remains poorly understood. In this study, we demonstrate that IsiA uses a novel cysteine-mediated process to quench excitation energy. The single cysteine in IsiA in the cyanobacterium Synechocystis sp. strain PCC 6803 was converted to a valine. Ultrafast fluorescence spectroscopic analysis showed that this single change abolishes the excitation energy quenching ability of IsiA, thus providing direct evidence of the crucial role of this cysteine residue in energy dissipation from excited chlorophylls. Under stress conditions, the mutant cells exhibited enhanced light sensitivity, indicating that the cysteine-mediated quenching process is critically important for photoprotection.
Collapse
|
6
|
Xie Y, Chen L, Sun T, Zhang W. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Slonimskiy YB, Maksimov EG, Sluchanko NN. Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria†. Photochem Photobiol Sci 2020; 19:763-775. [PMID: 33856677 DOI: 10.1039/d0pp00015a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Abstract
Cyanobacteria utilize an elegant photoprotection mechanism mediated by the photoactive Orange Carotenoid Protein (OCP), which upon binding dissipates excess energy from light-harvesting complexes, phycobilisomes. The OCP activity is efficiently regulated by its partner, the Fluorescence Recovery Protein (FRP). FRP accelerates OCP conversion to the resting state, thus counteracting the OCP-mediated photoprotection. Behind the deceptive simplicity of such regulation is hidden a multistep process involving dramatic conformational rearrangements in OCP and FRP, the details of which became clearer only a decade after the FRP discovery. Yet many questions regarding the functioning of FRP have remained controversial. In this review, we summarize the current knowledge and understanding of the FRP role in cyanobacterial photoprotection as well as its evolutionary history that presumably lies far beyond cyanobacteria.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Biochemistry, Faculty of Biology, 119991, Moscow, Russian Federation
| | - Eugene G Maksimov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, 119991, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation.
- M. V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, 119991, Moscow, Russian Federation.
| |
Collapse
|
8
|
Lou W, Niedzwiedzki DM, Jiang RJ, Blankenship RE, Liu H. Binding of red form of Orange Carotenoid Protein (OCP) to phycobilisome is not sufficient for quenching. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148155. [PMID: 31935359 DOI: 10.1016/j.bbabio.2020.148155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The Orange Carotenoid Protein (OCP) is responsible for photoprotection in many cyanobacteria. Absorption of blue light drives the conversion of the orange, inactive form (OCPO) to the red, active form (OCPR). Concomitantly, the N-terminal domain (NTD) and the C-terminal domain (CTD) of OCP separate, which ultimately leads to the formation of a quenched OCPR-PBS complex. The details of the photoactivation of OCP have been intensely researched. Binding site(s) of OCPR on the PBS core have also been proposed. However, the post-binding events of the OCPR-PBS complex remain unclear. Here, we demonstrate that PBS-bound OCPR is not sufficient as a PBS excitation energy quencher. Using site-directed mutagenesis, we generated a suite of single point mutations at OCP Leucine 51 (L51) of Synechocystis 6803. Steady-state and time-resolved fluorescence analyses demonstrated that all mutant proteins are unable to quench the PBS fluorescence, owing to either failed OCP binding to PBS, or, if bound, an OCP-PBS quenching state failed to form. The SDS-PAGE and Western blot analysis support that the L51A (Alanine) mutant binds to the PBS and therefore belongs to the second category. We hypothesize that upon binding to PBS, OCPR likely reorganizes and adopts a new conformational state (OCP3rd) different than either OCPO or OCPR to allow energy quenching, depending on the cross-talk between OCPR and its PBS core-binding counterpart.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ruidong J Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
9
|
Slonimskiy YB, Maksimov EG, Lukashev EP, Moldenhauer M, Friedrich T, Sluchanko NN. Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148174. [PMID: 32059843 DOI: 10.1016/j.bbabio.2020.148174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Photosynthesis requires various photoprotective mechanisms for survival of organisms in high light. In cyanobacteria exposed to high light, the Orange Carotenoid Protein (OCP) is reversibly photoswitched from the orange (OCPO) to the red (OCPR) form, the latter binds to the antenna (phycobilisomes, PBs) and quenches its overexcitation. OCPR accumulation implicates restructuring of a compact dark-adapted OCPO state including detachment of the N-terminal extension (NTE) and separation of protein domains, which is reversed by interaction with the Fluorescence Recovery Protein (FRP). OCP phototransformation supposedly occurs via an intermediate characterized by an OCPR-like absorption spectrum and an OCPO-like protein structure, but the hierarchy of steps remains debatable. Here, we devise and analyze an OCP variant with the NTE trapped on the C-terminal domain (CTD) via an engineered disulfide bridge (OCPCC). NTE trapping preserves OCP photocycling within the compact protein structure but precludes functional interaction with PBs and especially FRP, which is completely restored upon reduction of the disulfide bridge. Non-interacting with the dark-adapted oxidized OCPCC, FRP binds reduced OCPCC nearly as efficiently as OCPO devoid of the NTE, suggesting that the low-affinity FRP binding to OCPO is realized via NTE displacement. The low efficiency of excitation energy transfer in complexes between PBs and oxidized OCPCC indicates that OCPCC binds to PBs in an orientation suboptimal for quenching PBs fluorescence. Our approach supports the presence of the OCPR-like intermediate in the OCP photocycle and shows effective uncoupling of spectral changes from functional OCP photoactivation, enabling redox control of its structural dynamics and function.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biochemistry, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Eugene G Maksimov
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Evgeny P Lukashev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| |
Collapse
|
10
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Muzzopappa F, Kirilovsky D. Changing Color for Photoprotection: The Orange Carotenoid Protein. TRENDS IN PLANT SCIENCE 2020; 25:92-104. [PMID: 31679992 DOI: 10.1016/j.tplants.2019.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 05/09/2023]
Abstract
Under high irradiance, light becomes dangerous for photosynthetic organisms and they must protect themselves. Cyanobacteria have developed a simple mechanism, involving a photoactive soluble carotenoid protein, the orange carotenoid protein (OCP), which increases thermal dissipation of excess energy by interacting with the cyanobacterial antenna, the phycobilisome. Here, we summarize our knowledge of the OCP-related photoprotective mechanism, including the remarkable progress that has been achieved in recent years on OCP photoactivation and interaction with phycobilisomes, as well as with the fluorescence recovery protein, which is necessary to end photoprotection. A recently discovered unique mechanism of carotenoid transfer between soluble proteins related to OCP is also described.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
12
|
Li XD, Zhou LJ, Zhao C, Lu L, Niu NN, Han JX, Zhao KH. Optimization of expression of orange carotenoid protein in Escherichia coli. Protein Expr Purif 2019; 156:66-71. [DOI: 10.1016/j.pep.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
|
13
|
OCP-FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria. Nat Commun 2018; 9:3869. [PMID: 30250028 PMCID: PMC6155142 DOI: 10.1038/s41467-018-06195-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2018] [Indexed: 11/08/2022] Open
Abstract
In cyanobacteria, high light photoactivates the orange carotenoid protein (OCP) that binds to antennae complexes, dissipating energy and preventing the destruction of the photosynthetic apparatus. At low light, OCP is efficiently deactivated by a poorly understood action of the dimeric fluorescence recovery protein (FRP). Here, we engineer FRP variants with defined oligomeric states and scrutinize their functional interaction with OCP. Complemented by disulfide trapping and chemical crosslinking, structural analysis in solution reveals the topology of metastable complexes of OCP and the FRP scaffold with different stoichiometries. Unable to tightly bind monomeric FRP, photoactivated OCP recruits dimeric FRP, which subsequently monomerizes giving 1:1 complexes. This could be facilitated by a transient OCP–2FRP–OCP complex formed via the two FRP head domains, significantly improving FRP efficiency at elevated OCP levels. By identifying key molecular interfaces, our findings may inspire the design of optically triggered systems transducing light signals into protein–protein interactions. Cyanobacterial photoprotection is controlled by OCP and FRP proteins, but their dynamic interplay is not fully understood. Here, the authors combine protein engineering, disulfide trapping and structural analyses to provide mechanistic insights into the transient OCP-FRP interaction.
Collapse
|
14
|
Sonani RR, Gardiner A, Rastogi RP, Cogdell R, Robert B, Madamwar D. Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates. PHOTOSYNTHESIS RESEARCH 2018; 137:171-180. [PMID: 29574660 DOI: 10.1007/s11120-018-0498-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria exhibit a novel form of non-photochemical quenching (NPQ) at the level of the phycobilisome. NPQ is a process that protects photosystem II (PSII) from possible highlight-induced photo-damage. Although significant advancement has been made in understanding the NPQ, there are still some missing details. This critical review focuses on how the orange carotenoid protein (OCP) and its partner fluorescence recovery protein (FRP) control the extent of quenching. What is and what is not known about the NPQ is discussed under four subtitles; where does exactly the site of quenching lie? (site), how is the quenching being triggered? (trigger), molecular mechanism of quenching (quenching) and recovery from quenching. Finally, a recent working model of NPQ, consistent with recent findings, is been described.
Collapse
Affiliation(s)
- Ravi R Sonani
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India.
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK.
- CEA, Institute of Biology and Technology of Saclay, CNRS, 91191, Gif/Yvette, France.
- School of Sciences, P. P. Savani University, Dhamdod, Kosamba, Surat, Gujarat, 394125, India.
| | - Alastair Gardiner
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK
| | - Rajesh P Rastogi
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India
| | - Richard Cogdell
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Bruno Robert
- CEA, Institute of Biology and Technology of Saclay, CNRS, 91191, Gif/Yvette, France.
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India.
| |
Collapse
|
15
|
Slonimskiy YB, Maksimov EG, Lukashev EP, Moldenhauer M, Jeffries CM, Svergun DI, Friedrich T, Sluchanko NN. Functional interaction of low-homology FRPs from different cyanobacteria with Synechocystis OCP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018. [DOI: 10.1016/j.bbabio.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Sluchanko NN, Slonimskiy YB, Maksimov EG. Features of Protein-Protein Interactions in the Cyanobacterial Photoprotection Mechanism. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523061 DOI: 10.1134/s000629791713003x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes - the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the "energy funnel" principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a significant change in its structure and spectral characteristics. Such conformational changes open the possibility for protein-protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluorescence recovery protein. Even though OCP was discovered in 1981, little was known about the conformation of its active form until recently, as well as about the properties of homologs of its N and C domains. Studies carried out during recent years have made a breakthrough in understanding of the structural-functional organization of OCP and have enabled discovery of new aspects of the regulation of photoprotection processes in cyanobacteria. This review focuses on aspects of protein-protein interactions between the main participants of photoprotection reactions and on certain properties of representatives of newly discovered families of OCP homologs.
Collapse
Affiliation(s)
- N N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
17
|
Magdaong NCM, Blankenship RE. Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. J Biol Chem 2018; 293:5018-5025. [PMID: 29298897 DOI: 10.1074/jbc.tm117.000233] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-harvesting complexes (LHCs) serve a dual role in photosynthesis, depending on the prevailing light conditions. In low light, they ensure photosynthetic efficiency by maximizing the light absorption cross-section and subsequent energy storage. Under excess light conditions, LHCs perform photoprotective quenching functions to prevent harmful chemical species such as triplet chlorophyll and singlet oxygen from forming and damaging the photosynthetic apparatus. In this Minireview, various photoprotective quenching mechanisms that have been identified in different photosynthetic organisms are surveyed and summarized, and implications for improving photosynthetic productivity are briefly discussed.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- From the Departments of Biology and Chemistry and.,the Photosynthetic Antenna Research Center, Washington University in Saint Louis, St. Louis, Missouri 63130
| | - Robert E Blankenship
- From the Departments of Biology and Chemistry and .,the Photosynthetic Antenna Research Center, Washington University in Saint Louis, St. Louis, Missouri 63130
| |
Collapse
|
18
|
The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci Rep 2017; 7:15548. [PMID: 29138423 PMCID: PMC5686206 DOI: 10.1038/s41598-017-15520-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022] Open
Abstract
The 35-kDa Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor and efficient quencher of phycobilisome excitation. Photoactivation triggers large-scale conformational rearrangements to convert OCP from the orange OCPO state to the red active signaling state, OCPR, as demonstrated by various structural methods. Such rearrangements imply a complete, yet reversible separation of structural domains and translocation of the carotenoid. Recently, dynamic crystallography of OCPO suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions. In this study, we took advantage of single 7 ns laser pulses to study carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state, OCPR. In addition, time-resolved fluorescence spectroscopy and the assignment of carotenoid-induced quenching of different tryptophan residues derived thereof revealed a novel orange intermediate state, which appears during the relaxation of photoactivated OCPR to OCPO. Our results show asynchronous changes between the carotenoid- and protein-associated kinetic components in a refined mechanistic model of the OCP photocycle, but also introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.
Collapse
|
19
|
Sluchanko NN, Slonimskiy YB, Moldenhauer M, Friedrich T, Maksimov EG. Deletion of the short N-terminal extension in OCP reveals the main site for FRP binding. FEBS Lett 2017; 591:1667-1676. [PMID: 28504309 DOI: 10.1002/1873-3468.12680] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
The orange carotenoid protein (OCP) plays a key role in cyanobacterial photoprotection. Photoconversion entails structural rearrangements in OCP that are required for its binding to phycobilisome, thereby inducing excitation energy dissipation. Detachment of OCP from phycobilisome requires the fluorescence recovery protein (FRP). It is considered that OCP interacts with FRP only in the photoactivated state; however, the binding site for FRP is currently unknown. As an important stabilizing element in orange OCP, the short αA-helix within the N-terminal extension (NTE) binds to the C-terminal domain (CTD), but unfolds upon photoactivation and interferes with phycobilisome binding. Here, we demonstrate that the NTE shares specific structural and functional similarities with FRP and discover the main site of OCP-FRP interactions in the OCP-CTD.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.,Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Yury B Slonimskiy
- Department of Biochemistry, Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | | | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Germany
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| |
Collapse
|