1
|
Chen R, Zhou J, Liu L, Mao XL, Zhou X, Xie W. Crystal structure of human METTL6, the m 3C methyltransferase. Commun Biol 2021; 4:1361. [PMID: 34862464 PMCID: PMC8642396 DOI: 10.1038/s42003-021-02890-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
In tRNA, the epigenetic m3C modification at position 32 in the anticodon loop is highly conserved in eukaryotes, which maintains the folding and basepairing functions of the anticodon. However, the responsible enzymes METTL2 and METTL6 were identified only in recent years. The loss of human METTL6 (hMETTL6) affects the translational process and proteostasis in cells, while in mESCs cells, it leads to defective pluripotency potential. Despite its important functions, the catalytic mechanism of the C32 methylation by this enzyme is poorly understood. Here we present the 1.9 Å high-resolution crystal structure of hMETTL6 bound by SAH. The key residues interacting with the ligand were identified and their roles were confirmed by ITC. We generated a docking model for the hMETTL6-SAH-CMP ternary complex. Interestingly, the CMP molecule binds into a cavity in a positive patch with the base ring pointing to the inside, suggesting a flipped-base mechanism for methylation. We further generated a model for the quaternary complex with tRNASer as a component, which reasonably explained the biochemical behaviors of hMETTL6. Taken together, our crystallographic and biochemical studies provide important insight into the molecular recognition mechanism by METTL6 and may aid in the METTL-based rational drug design in the future.
Collapse
Affiliation(s)
- Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou, 511458, People's Republic of China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ling Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xue-Ling Mao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, People's Republic of China
| | - Xiaolong Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, People's Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
2
|
Su C, Yan Y, Guo X, Luo J, Liu C, Zhang Z, Xiang WS, Huang SX. Characterization of the N-methyltransferases involved in the biosynthesis of toxoflavin, fervenulin and reumycin from Streptomyces hiroshimensis ATCC53615. Org Biomol Chem 2019; 17:477-481. [PMID: 30565634 DOI: 10.1039/c8ob02847h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Toxoflavin (1), fervenulin (2), and reumycin (3), known to be produced by plant pathogen Burkholderia glumae BGR1, are structurally related 7-azapteridine antibiotics. Previous biosynthetic studies revealed that N-methyltransferase ToxA from B. glumae BGR1 catalyzed the sequential methylation at N6 and N1 in pyrimido[5,4-e]-as-triazine-5,7(6H,8H)-dione (4) to generate 1. However, the N8 methylation of 4 in the biosynthesis of fervenulin remains unclear. To explore the N-methyltransferases required for the biosynthesis of 1 and 2, we identified and characterized the fervenulin and toxoflavin biosynthetic gene clusters in S. hiroshimensis ATCC53615. On the basis of the structures of intermediates accumulated from the four N-methyltransferase gene inactivation mutants and systematic enzymatic methylation reactions, the tailoring steps for the methylation order in the biosynthesis of 1 and 2 were proposed. The N-methylation order and routes for the biosynthesis of fervenulin and toxoflavin in S. hiroshimensis are more complex and represent an obvious departure from those in B. glumae BGR1.
Collapse
Affiliation(s)
- Can Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|