1
|
Cancer-related Mutations with Local or Long-range Effects on an Allosteric Loop of p53. J Mol Biol 2022; 434:167663. [PMID: 35659507 DOI: 10.1016/j.jmb.2022.167663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.
Collapse
|
2
|
Palanikumar L, Karpauskaite L, Al-Sayegh M, Chehade I, Alam M, Hassan S, Maity D, Ali L, Kalmouni M, Hunashal Y, Ahmed J, Houhou T, Karapetyan S, Falls Z, Samudrala R, Pasricha R, Esposito G, Afzal AJ, Hamilton AD, Kumar S, Magzoub M. Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat Commun 2021; 12:3962. [PMID: 34172723 PMCID: PMC8233319 DOI: 10.1038/s41467-021-23985-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Missense mutations in p53 are severely deleterious and occur in over 50% of all human cancers. The majority of these mutations are located in the inherently unstable DNA-binding domain (DBD), many of which destabilize the domain further and expose its aggregation-prone hydrophobic core, prompting self-assembly of mutant p53 into inactive cytosolic amyloid-like aggregates. Screening an oligopyridylamide library, previously shown to inhibit amyloid formation associated with Alzheimer's disease and type II diabetes, identified a tripyridylamide, ADH-6, that abrogates self-assembly of the aggregation-nucleating subdomain of mutant p53 DBD. Moreover, ADH-6 targets and dissociates mutant p53 aggregates in human cancer cells, which restores p53's transcriptional activity, leading to cell cycle arrest and apoptosis. Notably, ADH-6 treatment effectively shrinks xenografts harboring mutant p53, while exhibiting no toxicity to healthy tissue, thereby substantially prolonging survival. This study demonstrates the successful application of a bona fide small-molecule amyloid inhibitor as a potent anticancer agent.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Laura Karpauskaite
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Maheen Alam
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sarah Hassan
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Debabrata Maity
- Department of Chemistry, New York University, New York, NY, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Yamanappa Hunashal
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,DAME, Università di Udine, Udine, Italy
| | - Jemil Ahmed
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA
| | - Tatiana Houhou
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Shake Karapetyan
- Physics Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Zackary Falls
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Gennaro Esposito
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,INBB, Rome, Italy
| | - Ahmed J Afzal
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | | | - Sunil Kumar
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA.
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Bhattacharjee S, Mukherjee S, Roy S. DNA-Bound p53-DNA-Binding Domain Interconverts between Multiple Conformations: Implications for Partner Protein Recognition. J Phys Chem B 2021; 125:5832-5837. [PMID: 34042457 DOI: 10.1021/acs.jpcb.1c03794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein-protein interaction networks are critical components of cellular regulation. Hub proteins, defined by their ability to interact with numerous protein partners, are the pivots of these networks. A hypothesis that an ensemble of rapidly interconverting conformational states contributes significantly to the ability of hub proteins to interact with diverse partners has been proposed. The master gene regulator p53 is a prototype multidomain hub protein. Its DNA-binding domain alone is involved in interactions with many of its partner proteins. We investigated the dynamics of the p53 DNA-binding domain by 15N-NMR Carr-Purcell-Meiboom-Gill relaxation methods. In the DNA-bound state, we detected conformational exchanges in the domain in the microsecond to millisecond timescale, while dynamics at this timescale was not detectable in the free state. This suggests that the binding of p53 to specific DNA sequences promotes exchange between two or more conformational states, creating a broad conformational repertoire necessary for interacting with many partner proteins.
Collapse
Affiliation(s)
- Sayan Bhattacharjee
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sujoy Mukherjee
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, P1-12, C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
4
|
Li H, Cai Q, Yan X, Jie G. Target-switchable DNA hydrogels coupled with a Bi 2Sn 2O 7/Bi 2S 3 heterojunction based on in situ anion exchange for the "signal-on" photoelectrochemical detection of DNA. NANOSCALE 2021; 13:7678-7684. [PMID: 33928980 DOI: 10.1039/d1nr00573a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, a novel photoelectrochemical (PEC) "signal-on" biosensor based on a Bi2Sn2O7/Bi2S3 heterojunctioncoupled with target-switchable DNA hydrogels is reported for the ultrasensitive detection of P53 gene DNA. For the first time, sulfide ions are discovered to display an excellent PEC sensitization effect on Bi2Sn2O7 material by forming the Bi2Sn2O7/Bi2S3 heterojunction. The sensitization amplitude increased by 63 times, and the photocurrent polarity switched from cathodic to anodic. When the target DNA-induced-cycling amplification process produced a mass of product chains (PD), PD was introduced into the target-switchable DNA hydrogels to quantitatively release sulfide ions, which were further introduced to the Bi2Sn2O7-modified PEC platform and resulted in an enormous enhancement of the PEC signal due to the significant sensitization effect of sulfide ions on Bi2Sn2O7via an anion-exchange reaction. The corresponding PEC signal change of the Bi2Sn2O7/Bi2S3 platform was used for the detection of target DNA. This biosensing strategy opens up a novel sulfide ion-sensitized PEC platform and exhibits excellent analytical performance with a wide linear range (100 fM-10 nM), which has broad application prospects in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xiaoshi Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
5
|
Barros EP, Demir Ö, Soto J, Cocco MJ, Amaro RE. Markov state models and NMR uncover an overlooked allosteric loop in p53. Chem Sci 2020; 12:1891-1900. [PMID: 34163952 PMCID: PMC8179107 DOI: 10.1039/d0sc05053a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The tumor suppressor p53 is the most frequently mutated gene in human cancer, and thus reactivation of mutated p53 is a promising avenue for cancer therapy. Analysis of wildtype p53 and the Y220C cancer mutant long-timescale molecular dynamics simulations with Markov state models and validation by NMR relaxation studies has uncovered the involvement of loop L6 in the slowest motions of the protein. Due to its distant location from the DNA-binding surface, the conformational dynamics of this loop has so far remained largely unexplored. We observe mutation-induced stabilization of alternate L6 conformations, distinct from all experimentally-determined structures, in which the loop is both extended and located further away from the DNA-interacting surface. Additionally, the effect of the L6-adjacent Y220C mutation on the conformational landscape of the functionally-important loop L1 suggests an allosteric role to this dynamic loop and the inactivation mechanism of the mutation. Finally, the simulations reveal a novel Y220C cryptic pocket that can be targeted for p53 rescue efforts. Our approach exemplifies the power of the MSM methodology for uncovering intrinsic dynamic and kinetic differences among distinct protein ensembles, such as for the investigation of mutation effects on protein function. Wildtype and Y220C L1 and L6 loops conformational landscape, with MSM-identified L6 states highlighted on the right.![]()
Collapse
Affiliation(s)
- Emilia P Barros
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| | - Jenaro Soto
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA
| | - Melanie J Cocco
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA.,Department of Molecular Biology and Biochemistry, University of California Irvine Irvine 92697 CA USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA +1-858-534-9645 +1-858-534-9629
| |
Collapse
|
7
|
Bej A, Rasquinha JA, Mukherjee S. Conformational Entropy as a Determinant of the Thermodynamic Stability of the p53 Core Domain. Biochemistry 2018; 57:6265-6269. [PMID: 30362715 DOI: 10.1021/acs.biochem.8b00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Juhi A. Rasquinha
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| |
Collapse
|