1
|
Guneri D, Alexandrou E, El Omari K, Dvořáková Z, Chikhale RV, Pike DTS, Waudby CA, Morris CJ, Haider S, Parkinson GN, Waller ZAE. Structural insights into i-motif DNA structures in sequences from the insulin-linked polymorphic region. Nat Commun 2024; 15:7119. [PMID: 39164244 PMCID: PMC11336075 DOI: 10.1038/s41467-024-50553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
The insulin-linked polymorphic region is a variable number of tandem repeats region of DNA in the promoter of the insulin gene that regulates transcription of insulin. This region is known to form the alternative DNA structures, i-motifs and G-quadruplexes. Individuals have different sequence variants of tandem repeats and although previous work investigated the effects of some variants on G-quadruplex formation, there is not a clear picture of the relationship between the sequence diversity, the DNA structures formed, and the functional effects on insulin gene expression. Here we show that different sequence variants of the insulin linked polymorphic region form different DNA structures in vitro. Additionally, reporter genes in cellulo indicate that insulin expression may change depending on which DNA structures form. We report the crystal structure and dynamics of an intramolecular i-motif, which reveal sequences within the loop regions forming additional stabilising interactions that are critical to formation of stable i-motif structures. The outcomes of this work reveal the detail in formation of stable i-motif DNA structures, with potential for rational based drug design for compounds to target i-motif DNA.
Collapse
Affiliation(s)
- Dilek Guneri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Effrosyni Alexandrou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Zuzana Dvořáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Rupesh V Chikhale
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Daniel T S Pike
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Christopher A Waudby
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Christopher J Morris
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Shozeb Haider
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- UCL Centre for Advanced Research Computing, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Gary N Parkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Zoë A E Waller
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
2
|
Boissieras J, Bonnet H, Susanto MF, Gomez D, Defrancq E, Granzhan A, Dejeu J. iMab antibody binds single-stranded cytosine-rich sequences and unfolds DNA i-motifs. Nucleic Acids Res 2024; 52:8052-8062. [PMID: 38908025 PMCID: PMC11317162 DOI: 10.1093/nar/gkae531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
i-Motifs (iMs) are non-canonical, four-stranded secondary structures formed by stacking of hemi-protonated CH+·C base pairs in cytosine-rich DNA sequences, predominantly at pH < 7. The presence of iM structures in cells was a matter of debate until the recent development of iM-specific antibody, iMab, which was instrumental for several studies that suggested the existence of iMs in live cells and their putative biological roles. We assessed the interaction of iMab with cytosine-rich oligonucleotides by biolayer interferometry (BLI), pull-down assay and bulk-FRET experiments. Our results suggest that binding of iMab to DNA oligonucleotides is governed by the presence of runs of at least two consecutive cytosines and is generally increased in acidic conditions, irrespectively of the capacity of the sequence to adopt, or not, an iM structure. Moreover, the results of the bulk-FRET assay indicate that interaction with iMab results in unfolding of iM structures even in acidic conditions, similarly to what has been observed with hnRNP K, well-studied single-stranded DNA binding protein. Taken together, our results strongly suggest that iMab actually binds to blocks of 2-3 cytosines in single-stranded DNA, and call for more careful interpretation of results obtained with this antibody.
Collapse
Affiliation(s)
- Joseph Boissieras
- Chemistry and Modelling for Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405 Orsay, France
| | - Hugues Bonnet
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Maria Fidelia Susanto
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS UMR5089, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS UMR5089, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Eric Defrancq
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Anton Granzhan
- Chemistry and Modelling for Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405 Orsay, France
| | - Jérôme Dejeu
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
- SUPMICROTECH, Université Franche-Comté, Institut FEMTO-ST, 25000 Besançon, France
| |
Collapse
|
3
|
Smith SS. The bisulfite reaction with cytosine and genomic DNA structure. Anal Biochem 2024; 691:115532. [PMID: 38609028 DOI: 10.1016/j.ab.2024.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
The bisulfite reaction with native DNA has been extensively employed in the detection of non-B DNA structures that can form spontaneously in DNA. These sequences are dynamic in that they can adopt both normal Watson-Crick paired B-DNA or unusual structures like the Triplex, G-Quadruplex, i-motif and Cruciform or Hairpin. Considerable evidence now suggests that these dynamic sequences play roles in both epigenetics and mutagenesis. The bisulfite reaction with native DNA offers a key approach to their detection. In this application whole cells, isolated nuclei or isolated DNA are treated with bisulfite under non-denaturing conditions in order to detect bisulfite accessible regions DNA that are associated with these structures. Here I review the stereochemistry of the bisulfite reaction, the electronic structure of its DNA cytosine substrates and its application in the detection of unusual structures in native DNA.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
4
|
Boissieras J, Granzhan A. Potentiometric titrations to study ligand interactions with DNA i-motifs. Methods Enzymol 2023; 695:233-254. [PMID: 38521587 DOI: 10.1016/bs.mie.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
i-Motifs are non-canonical secondary structures of DNA formed by mutual intercalation of hemi-protonated cytosine-cytosine base pairs, most typically in slightly acidic conditions (pH<7.0). These structures are well-studied in vitro and have recently been suggested to exist in cells. Despite nearly a decade of active research, the quest for small-molecule ligands that could selectively bind to and stabilize i-motifs continues, and no reference, bona fide i-motif ligand is currently available. This is, at least in part, due to the lack of robust methods to assess the interaction of ligands with i-motifs, since many techniques well-established for studies of other secondary structures (such as CD-, UV-, and FRET-melting) may generate artifacts when applied to i-motifs. Here, we describe an implementation of automated, potentiometric (pH) titrations as a robust isothermal method to assess the impact of ligands or cosolutes on thermodynamic stability of i-motifs. This approach is validated through the use of a cosolute previously known to stabilize i-motifs (PEG2000) and three small-molecule ligands that are able to stabilize, destabilize, or have no effect on the stability of i-motifs, respectively.
Collapse
Affiliation(s)
- Joseph Boissieras
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Orsay, France; CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, Orsay, France
| | - Anton Granzhan
- CMBC, CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, Orsay, France; CMBC, CNRS UMR9187, INSERM U1196, Université Paris Saclay, Orsay, France.
| |
Collapse
|
5
|
Balasubramaniyam T, Oh KI, Jin HS, Ahn HB, Kim BS, Lee JH. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int J Mol Sci 2021; 22:9552. [PMID: 34502459 PMCID: PMC8430589 DOI: 10.3390/ijms22179552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chemically modified nucleobases are thought to be important for therapeutic purposes as well as diagnosing genetic diseases and have been widely involved in research fields such as molecular biology and biochemical studies. Many artificially modified nucleobases, such as methyl, halogen, and aryl modifications of purines at the C8 position and pyrimidines at the C5 position, are widely studied for their biological functions. DNA containing these modified nucleobases can form non-canonical helical structures such as Z-DNA, G-quadruplex, i-motif, and triplex. This review summarizes the synthesis of chemically modified nucleotides: (i) methylation, bromination, and arylation of purine at the C8 position and (ii) methylation, bromination, and arylation of pyrimidine at the C5 position. Additionally, we introduce the non-canonical structures of nucleic acids containing these modifications.
Collapse
Affiliation(s)
- Thananjeyan Balasubramaniyam
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Kwnag-Im Oh
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Ho-Seong Jin
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
| | - Hye-Bin Ahn
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
| | - Byeong-Seon Kim
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
- Department of Chemistry Education, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Joon-Hwa Lee
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| |
Collapse
|
6
|
Wright EP, Abdelhamid MAS, Ehiabor MO, Grigg MC, Irving K, Smith NM, Waller ZAE. Epigenetic modification of cytosines fine tunes the stability of i-motif DNA. Nucleic Acids Res 2020; 48:55-62. [PMID: 31777919 PMCID: PMC6943138 DOI: 10.1093/nar/gkz1082] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/29/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023] Open
Abstract
i-Motifs are widely used in nanotechnology, play a part in gene regulation and have been detected in human nuclei. As these structures are composed of cytosine, they are potential sites for epigenetic modification. In addition to 5-methyl- and 5-hydroxymethylcytosine modifications, recent evidence has suggested biological roles for 5-formylcytosine and 5-carboxylcytosine. Herein the human telomeric i-motif sequence was used to examine how these four epigenetic modifications alter the thermal and pH stability of i-motifs. Changes in melting temperature and transitional pH depended on both the type of modification and its position within the i-motif forming sequence. The cytosines most sensitive to modification were next to the first and third loops within the structure. Using previously described i-motif forming sequences, we screened the MCF-7 and MCF-10A methylomes to map 5-methylcytosine and found the majority of sequences were differentially methylated in MCF7 (cancerous) and MCF10A (non-cancerous) cell lines. Furthermore, i-motif forming sequences stable at neutral pH were significantly more likely to be epigenetically modified than traditional acidic i-motif forming sequences. This work has implications not only in the epigenetic regulation of DNA, but also allows discreet tunability of i-motif stability for nanotechnological applications.
Collapse
Affiliation(s)
- Elisé P Wright
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Mahmoud A S Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Michelle O Ehiabor
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Melanie C Grigg
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Kelly Irving
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
7
|
Amparo C, Clark J, Bedell V, Murata-Collins JL, Martella M, Pichiorri F, Warner EF, Abdelhamid MAS, Waller ZAE, Smith SS. Duplex DNA from Sites of Helicase-Polymerase Uncoupling Links Non-B DNA Structure Formation to Replicative Stress. Cancer Genomics Proteomics 2020; 17:101-115. [PMID: 32108033 DOI: 10.21873/cgp.20171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Replication impediments can produce helicase-polymerase uncoupling allowing lagging strand synthesis to continue for as much as 6 kb from the site of the impediment. MATERIALS AND METHODS We developed a cloning procedure designed to recover fragments from lagging strand near the helicase halt site. RESULTS A total of 62% of clones from a p53-deficient tumor cell line (PC3) and 33% of the clones from a primary cell line (HPS-19I) were within 5 kb of a G-quadruplex forming sequence. Analyses of a RACK7 gene sequence, that was cloned multiple times from the PC3 line, revealed multiple deletions in region about 1 kb from the cloned region that was present in a non-B conformation. Sequences from the region formed G-quadruplex and i-motif structures under physiological conditions. CONCLUSION Defects in components of non-B structure suppression systems (e.g. p53 helicase targeting) promote replication-linked damage selectively targeted to sequences prone to G-quadruplex and i-motif formation.
Collapse
Affiliation(s)
- Camille Amparo
- Division of Urology, City of Hope National Medical Center, Duarte, CA, U.S.A.,Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
| | - Jarrod Clark
- Division of Urology, City of Hope National Medical Center, Duarte, CA, U.S.A.,Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
| | - Victoria Bedell
- Division of Cytogenetics, City of Hope National Medical Center, Duarte, CA, U.S.A
| | | | - Marianna Martella
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope National Medical Center, Duarte, CA, U.S.A.,Hematological Malignancies and Translational Science, City of Hope National Medical Center, Duarte, CA, U.S.A
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope National Medical Center, Duarte, CA, U.S.A.,Hematological Malignancies and Translational Science, City of Hope National Medical Center, Duarte, CA, U.S.A
| | - Emily F Warner
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, U.K
| | | | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, U.K
| | - Steven S Smith
- Beckman Research Institute, City of Hope, Duarte, CA, U.S.A. .,Hematological Malignancies and Translational Science, City of Hope National Medical Center, Duarte, CA, U.S.A
| |
Collapse
|
8
|
Abdelhamid MAS, Waller ZAE. Tricky Topology: Persistence of Folded Human Telomeric i-Motif DNA at Ambient Temperature and Neutral pH. Front Chem 2020; 8:40. [PMID: 32083057 PMCID: PMC7005205 DOI: 10.3389/fchem.2020.00040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
i-Motifs are four-stranded DNA structures formed from sequences rich in cytosine, held together by hemi-protonated cytosine-cytosine base pairs. These structures have been utilized extensively as pH-switches in DNA-based nanotechnology. Recently there has been an increasing interest in i-motif structures in biology, fuelled by examples of when these can form under neutral conditions. Herein we describe a cautionary tale regarding handling of i-motif samples. Using CD and UV spectroscopy we show that it is important to be consistent in annealing i-motif DNA samples as at neutral pH, i-motif unfolding kinetics is dependent on the time allowed for annealing and equilibration. We describe how the quadruplex structure formed by the human telomeric i-motif sequence can be shown to form and persist in the same conditions of neutral pH and ambient temperature in which, once at thermodynamic equilibrium, it exists predominantly as a random coil. This study has implications not only for work with i-motif DNA structures, but also in the uses and applications of these in nanotechnological devices.
Collapse
Affiliation(s)
- Mahmoud A S Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
9
|
Abou Assi H, Garavís M, González C, Damha MJ. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res 2019; 46:8038-8056. [PMID: 30124962 PMCID: PMC6144788 DOI: 10.1093/nar/gky735] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The i-motif represents a paradigmatic example of the wide structural versatility of nucleic acids. In remarkable contrast to duplex DNA, i-motifs are four-stranded DNA structures held together by hemi- protonated and intercalated cytosine base pairs (C:C+). First observed 25 years ago, and considered by many as a mere structural oddity, interest in and discussion on the biological role of i-motifs have grown dramatically in recent years. In this review we focus on structural aspects of i-motif formation, the factors leading to its stabilization and recent studies describing the possible role of i-motifs in fundamental biological processes.
Collapse
Affiliation(s)
- Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Miguel Garavís
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
10
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i‐Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manish Debnath
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Khushnood Fatma
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| |
Collapse
|
11
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i-Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019; 58:2942-2957. [PMID: 30600876 DOI: 10.1002/anie.201813288] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Indexed: 12/20/2022]
Abstract
DNA sequences rich in cytosine have the propensity, under acidic pH, to fold into four-stranded intercalated DNA structures called i-motifs. Recent studies have provided significant breakthroughs that demonstrate how chemists can manipulate these structures for nanobiotechnology and therapeutics. The first section of this Minireview discusses the development of advanced functional nanostructures by synthetic conjugation of i-motifs with organic scaffolds and metal nanoparticles and their role in therapeutics. The second section highlights the therapeutic targeting of i-motifs with chemical scaffolds and their significance in biology. For this, first we shed light on the long-lasting debate regarding the stability of i-motifs under physiological conditions. Next, we present a comparative analysis of recently reported small molecules for specifically targeting i-motifs over other abundant DNA structures and modulating their function in cellular systems. These advances provide new insights into i-motif-targeted regulation of gene expression, telomere maintenance, and therapeutic applications.
Collapse
Affiliation(s)
- Manish Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Khushnood Fatma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
12
|
Pagano A, Iaccarino N, Abdelhamid MAS, Brancaccio D, Garzarella EU, Di Porzio A, Novellino E, Waller ZAE, Pagano B, Amato J, Randazzo A. Common G-Quadruplex Binding Agents Found to Interact With i-Motif-Forming DNA: Unexpected Multi-Target-Directed Compounds. Front Chem 2018; 6:281. [PMID: 30137743 PMCID: PMC6066642 DOI: 10.3389/fchem.2018.00281] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022] Open
Abstract
G-quadruplex (G4) and i-motif (iM) are four-stranded non-canonical nucleic acid structural arrangements. Recent evidences suggest that these DNA structures exist in living cells and could be involved in several cancer-related processes, thus representing an attractive target for anticancer drug discovery. Efforts toward the development of G4 targeting compounds have led to a number of effective bioactive ligands. Herein, employing several biophysical methodologies, we studied the ability of some well-known G4 ligands to interact with iM-forming DNA. The data showed that the investigated compounds are actually able to interact with both DNA in vitro, thus acting de facto as multi-target-directed agents. Interestingly, while all the compounds stabilize the G4, some of them significantly reduce the stability of the iM. The present study highlights the importance, when studying G4-targeting compounds, of evaluating also their behavior toward the i-motif counterpart.
Collapse
Affiliation(s)
- Alessia Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Mahmoud A S Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|