1
|
Dasari AKR, Coats MF, Ali AB, Lim KH. Identification of the interfacial regions in misfolded transthyretin oligomers. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141027. [PMID: 38796131 PMCID: PMC11283945 DOI: 10.1016/j.bbapap.2024.141027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Misfolding and aggregation of transthyretin (TTR) is associated with numerous ATTR amyloidosis. TTR aggregates extracted from ATTR patients consist of not only full-length TTR, but also N-terminally truncated TTR fragments that can be produced by proteolytic cleavage, suggesting the presence of multiple misfolding pathways. Here, we report mechanistic studies of an early stage of TTR aggregation to probe the oligomerization process for the full-length as well as N-terminally truncated TTR. Our kinetic analyses using size exclusion chromatography revealed that amyloidogenic monomers dissociated from wild-type (WT) as well as pathogenic variants (V30M and L55P) form misfolded dimers, which self-assemble into oligomers, precursors of fibril formation. Dimeric interfaces in the full-length misfolded oligomers were investigated by examining the effect of single-point mutations on the two β-strands (F and H). The single-point mutations on the two β-strands (E92P on strand F and T119W on strand H) inhibited the dimerization of misfolded monomers, while the TTR variants can still form native dimers through the same F and H strands. These results suggest that the two strands are involved in intermolecular associations for both native and misfolded dimers, but detailed intermolecular interactions are different in the two forms of dimers. In the presence of a proteolytic enzyme, TTR aggregation is greatly accelerated. The two mutations on the two β-strands, however, inhibited TTR aggregation even in the presence of a proteolytic enzyme, trypsin. These results suggest that the two β-strands (F and H) play a critical role in aggregation of the N-terminally truncated TTR as well.
Collapse
Affiliation(s)
- Anvesh K R Dasari
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Matthew F Coats
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | | | - Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
2
|
Fiore M, Cambieri C, Libonati L, Moret F, D’Andrea E, Di Certo MG, Passananti C, Gabanella F, Corbi N, Garibaldi M, Chimenti C, Alfarano M, Ferraguti G, Francati S, Inghilleri M, Ceccanti M. Oxidative Stress in Transthyretin-Mediated Amyloidosis: An Exploratory Study. Antioxidants (Basel) 2024; 13:998. [PMID: 39199243 PMCID: PMC11351233 DOI: 10.3390/antiox13080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Transthyretin-mediated amyloidosis (ATTR) is a systemic disease with protein precipitation in many tissues, mainly the peripheral nerve and heart. Both genetic (ATTRv, "v" for variant) and wild-type (ATTRwt) forms are known. Beyond the steric encumbrance, precipitated transthyretin seems to have a toxic effect. In this study carried out in men, we recruited 15 ATTRv patients, 7 ATTRv asymptomatic carriers, 14 ATTRwt patients and 10 young and 13 old healthy controls to evaluate the oxidative stress using FORD (Free Oxygen Radicals Defense) and FORT (Free Oxygen Radicals Test) analyses. ATTRv patients showed reduced FORD compared to ATTRwt and ATTRv asymptomatic carriers. FORD independently predicted the disease stage, with the early stages characterized by the highest consumption. These findings suggest a role for oxidative stress in the early stages of ATTRv.
Collapse
Affiliation(s)
- Marco Fiore
- CNR-Institute of Biochemistry and Cell Biology, Via Ercole Ramarini 32, 00015 Monterotondo, Italy; (M.G.D.C.); (F.G.)
| | - Chiara Cambieri
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy
| | - Laura Libonati
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy
| | - Federica Moret
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy
| | - Edoardo D’Andrea
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Via Ercole Ramarini 32, 00015 Monterotondo, Italy; (M.G.D.C.); (F.G.)
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Via Ercole Ramarini 32, 00015 Monterotondo, Italy; (M.G.D.C.); (F.G.)
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Matteo Garibaldi
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Alfarano
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Maurizio Inghilleri
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Marco Ceccanti
- Center for Rare Neuromuscular Diseases, Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy
| |
Collapse
|
3
|
Chatterjee S, Salimi A, Lee JY. Histidine tautomerism-mediated transthyretin amyloidogenesis: A molecular insight. Arch Biochem Biophys 2023; 742:109618. [PMID: 37172673 DOI: 10.1016/j.abb.2023.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Characterization of the conformational alterations involved in monomer misfolding is essential for elucidating the molecular basis of the initial stage of protein accumulation. Here, we report the first structural analyses of transthyretin (TTR) (26-57) fragments with two histidine tautomeric states (δ; Nδ1H and ε; Nε2H) using replica-exchange molecular dynamics (REMD) simulations. Explaining the organizational properties and misfolding procedure is challenging because the δ and ε configurations can occur in the free neutral state. REMD revealed that β-sheet generation is favored for the δδ (16.8%) and εδ (6.7%) tautomeric isomers, showing frequent main-chain contacts between the stable regions near the head (N-terminus) and central (middle) part compared to the εε (4.8%) and δε (2.8%) isomers. The presence of smaller and wider local energy minima may be related to the structural stability and toxicity of δδ/εδ and εε/δε. Histidines31 and 56 were the parts of regular (such as β-strand) and nonregular (such as coil) secondary structures within the highly toxic TTR isomer. For TTR amyloidosis, focusing on hazardous isomeric forms with high sheet contents may be a potent treatment strategy. Overall, our findings support the tautomerism concept and aid in our comprehension of the basic tautomeric actions of neutral histidine throughout the misfolding process.
Collapse
Affiliation(s)
- Sompriya Chatterjee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
4
|
Li L, Sun G, Yu J, Shan G, Su L, Dong G. Identification of predictors for the comprehensive clinical risk and severity of coronary lesions of acute coronary syndrome. Front Cardiovasc Med 2023; 10:1046895. [PMID: 37089882 PMCID: PMC10117978 DOI: 10.3389/fcvm.2023.1046895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
BackgroundAcute coronary syndrome (ACS) is the most common cause of death in patients with coronary artery disease. The aim of the study was to identify the predictors of both comprehensive clinical risk and severity of coronary lesions by comprehensive use of GRACE and SYNTAX scores in patients with ACS.MethodsClinical data of 225 ACS patients who underwent coronary angiography between 2015 and 2016 were collected. Multiple logistic regression analysis (stepwise) was used to identify the predictors. The predictive ability of predictors and the model were determined using receiver operating characteristics analyses.ResultsMultivariable logistic regression analyses showed that high aspartate aminotransferase (AST) predicted the comprehensive clinical risk with odds ratios (ORs) and 95% confidence intervals (CIs) of 1.011 (1.002–1.021). High total cholesterol (TC) and red blood cell distribution width (RDW) predicted the severity of coronary lesions with ORs and 95% CIs of 1.517 (1.148–2.004) and 1.556 (1.195–2.028), respectively. Low prealbumin predicted both severity of coronary lesions and comprehensive clinical risk of ACS patients with ORs and 95% CIs of 0.743 (0.672–0.821) and 0.836 (0.769–0.909), respectively. The model with a combination of prealbumin and AST had the highest predictive efficacy for comprehensive clinical risk, and the combination of prealbumin, TC, and RDW had the highest predictive efficacy for the severity of coronary lesions. The sensitivity and specificity, and the optimal cut-off values of these four indexes were determined.ConclusionsFour predictors for the comprehensive clinical risk and severity of coronary lesions of ACS were identified, which provided important information for the early diagnosis and appropriate treatment of ACS.
Collapse
Affiliation(s)
- Lihui Li
- Department of Cardiovascular, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangfeng Sun
- Department of Emergency, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jiangbo Yu
- Department of Cardiovascular, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gaojun Shan
- Department of Cardiovascular, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lide Su
- Department of Cardiovascular, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guo Dong
- Department of Cardiovascular, First Affiliated Hospital of Harbin Medical University, Harbin, China
- Correspondence: Guo Dong
| |
Collapse
|
5
|
Duan G, Li Y, Ye M, Liu H, Wang N, Luo S. The Regulatory Mechanism of Transthyretin Irreversible Aggregation through Liquid-to-Solid Phase Transition. Int J Mol Sci 2023; 24:ijms24043729. [PMID: 36835140 PMCID: PMC9960511 DOI: 10.3390/ijms24043729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Transthyretin (TTR) aggregation and amyloid formation are associated with several ATTR diseases, such as senile systemic amyloidosis (SSA) and familial amyloid polyneuropathy (FAP). However, the mechanism that triggers the initial pathologic aggregation process of TTR remains largely elusive. Lately, increasing evidence has suggested that many proteins associated with neurodegenerative diseases undergo liquid-liquid phase separation (LLPS) and subsequent liquid-to-solid phase transition before the formation of amyloid fibrils. Here, we demonstrate that electrostatic interactions mediate LLPS of TTR, followed by a liquid-solid phase transition, and eventually the formation of amyloid fibrils under a mildly acidic pH in vitro. Furthermore, pathogenic mutations (V30M, R34T, and K35T) of TTR and heparin promote the process of phase transition and facilitate the formation of fibrillar aggregates. In addition, S-cysteinylation, which is a kind of post-translational modification of TTR, reduces the kinetic stability of TTR and increases the propensity for aggregation, while another modification, S-sulfonation, stabilizes the TTR tetramer and reduces the aggregation rate. Once TTR was S-cysteinylated or S-sulfonated, they dramatically underwent the process of phase transition, providing a foundation for post-translational modifications that could modulate TTR LLPS in the context of pathological interactions. These novel findings reveal molecular insights into the mechanism of TTR from initial LLPS and subsequent liquid-to-solid phase transition to amyloid fibrils, providing a new dimension for ATTR therapy.
Collapse
|
6
|
Dasari AKR, Yi S, Coats MF, Wi S, Lim KH. Toxic Misfolded Transthyretin Oligomers with Different Molecular Conformations Formed through Distinct Oligomerization Pathways. Biochemistry 2022; 61:2358-2365. [PMID: 36219173 PMCID: PMC9665167 DOI: 10.1021/acs.biochem.2c00390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein aggregation is initiated by structural changes from native polypeptides to cytotoxic oligomers, which form cross-β structured amyloid. Identification and characterization of oligomeric intermediates are critically important for understanding not only the molecular mechanism of aggregation but also the cytotoxic nature of amyloid oligomers. Preparation of misfolded oligomers for structural characterization is, however, challenging because of their transient, heterogeneous nature. Here, we report two distinct misfolded transthyretin (TTR) oligomers formed through different oligomerization pathways. A pathogenic TTR variant with a strong aggregation propensity (L55P) was used to prepare misfolded oligomers at physiological pH. Our mechanistic studies showed that the full-length TTR initially forms small oligomers, which self-assemble into short protofibrils at later stages. Enzymatic cleavage of the CD loop was also used to induce the formation of N-terminally truncated oligomers, which was detected in ex vivo cardiac TTR aggregates extracted from the tissues of patients. Structural characterization of the oligomers using solid-state nuclear magnetic resonance and circular dichroism revealed that the two TTR misfolded oligomers have distinct molecular conformations. In addition, the proteolytically cleaved TTR oligomers exhibit a higher surface hydrophobicity, suggesting the presence of distinct oligomerization pathways for TTR oligomer formation. Cytotoxicity assays also revealed that the cytotoxicity of cleaved oligomers is stronger than that of the full-length TTR oligomers, indicating that hydrophobicity might be an important property of toxic oligomers. These comparative biophysical analyses suggest that the toxic cleaved TTR oligomers formed through a different misfoling pathway may adopt distinct structural features that produce higher surface hydrophobicity, leading to the stronger cytotoxic activities.
Collapse
Affiliation(s)
- Anvesh K. R. Dasari
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Sujung Yi
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Matthew F. Coats
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Sungsool Wi
- Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
7
|
Deep blue autofluorescence reflects the oxidation state of human transthyretin. Redox Biol 2022; 56:102434. [PMID: 35987087 PMCID: PMC9411673 DOI: 10.1016/j.redox.2022.102434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Human transthyretin (TTR) is a tetrameric protein transporting thyroid hormones and retinol. TTR is a neuroprotective factor and sensor of oxidative stress which stability is diminished due to mutations and aging, leading to amyloid deposition. Adverse environmental conditions, such as redox and metal ion imbalances, induce destabilization of the TTR structure. We have previously shown that the stability of TTR was disturbed by Ca2+ and other factors, including DTT, and led to the formation of an intrinsic fluorophore(s) emitting blue light, termed deep blue autofluorescence (dbAF). Here, we show that the redox state of TTR affects the formation dynamics and properties of dbAF. Free thiols lead to highly unstable subpopulations of TTR and the frequent ocurrence of dbAF. Oxidative conditions counteracted the destabilizing effects of free thiols to some extent. However, strong oxidative conditions led to modifications of TTR, which altered the stability of TTR and resulted in unique dbAF spectra. Riboflavin and/or riboflavin photoproducts bound to TTR and crosslinked TTR subunits. Riboflavin-sensitized photooxidation increased TTR unfolding, while photooxidation, either in the absence or presence of riboflavin, increased proteolysis and resulted in multiple oxidative modifications and dityrosine formation in TTR molecules. Therefore, oxidation can switch the role of TTR from a protective to pathogenic factor.
Collapse
|
8
|
Sun X, Ferguson JA, Dyson HJ, Wright PE. A transthyretin monomer intermediate undergoes local unfolding and transient interaction with oligomers in a kinetically concerted aggregation pathway. J Biol Chem 2022; 298:102162. [PMID: 35724960 PMCID: PMC9293765 DOI: 10.1016/j.jbc.2022.102162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022] Open
Abstract
Transthyretin (TTR) amyloidosis is associated with tissue deposition of TTR aggregates. TTR aggregation is initiated by dissociation of the native tetramer to form a monomeric intermediate, which locally unfolds and assembles into soluble oligomers and higher-order aggregates. However, a detailed mechanistic understanding requires kinetic and structural characterization of the low-population intermediates formed. Here we show that the monomeric intermediate exchanges with an ensemble of oligomers on the millisecond timescale. This transient and reversible exchange causes broadening of the 19F resonance of a trifluoromethyl probe coupled to the monomeric intermediate at S85C. We show the 19F linewidth and R2 relaxation rate increase in a linear manner with increasing concentration of the oligomer. Furthermore, introduction of 19F probes at additional TTR sites yielded distinct 19F chemical shifts for the TTR tetramer and monomer when the trifluoromethyl probe was attached at S100C, located near the same subunit interface as S85C, but not with probes attached at S46C or E63C, which are distant from any interfaces. The 19F probe at E63C shows that part of the DE loop, which is solvent-accessible in the tetramer, becomes more buried in the NMR-visible oligomers. Finally, using backbone amides as probes, we show that parts of the EF helix and H strand become highly flexible in the otherwise structured monomeric intermediate at acidic pH. We further find that TTR aggregation can be reversed by increasing pH. Taken together, this work provides insights into location-dependent conformational changes in the reversible early steps of a kinetically-concerted TTR aggregation pathway.
Collapse
Affiliation(s)
- Xun Sun
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
9
|
Transthyretin Misfolding, A Fatal Structural Pathogenesis Mechanism. Int J Mol Sci 2021; 22:ijms22094429. [PMID: 33922648 PMCID: PMC8122960 DOI: 10.3390/ijms22094429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Transthyretin (TTR) is an essential transporter of a thyroid hormone and a holo-retinol binding protein, found abundantly in human plasma and cerebrospinal fluid. In addition, this protein is infamous for its amyloidogenic propensity, causing various amyloidoses in humans, such as senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. It has been known for over two decades that decreased stability of the native tetrameric conformation of TTR is the main cause of these diseases. Yet, mechanistic details on the amyloidogenic transformation of TTR were not clear until recent multidisciplinary investigations on various structural states of TTR. In this review, we discuss recent advancements in the structural understanding of TTR misfolding and amyloidosis processes. Special emphasis has been laid on the observations of novel structural features in various amyloidogenic species of TTR. In addition, proteolysis-induced fragmentation of TTR, a recently proposed mechanism facilitating TTR amyloidosis, has been discussed in light of its structural consequences and relevance to acknowledge the amyloidogenicity of TTR.
Collapse
|
10
|
Divergence Entropy-Based Evaluation of Hydrophobic Core in Aggressive and Resistant Forms of Transthyretin. ENTROPY 2021; 23:e23040458. [PMID: 33924717 PMCID: PMC8070611 DOI: 10.3390/e23040458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
The two forms of transthyretin differing slightly in the tertiary structure, despite the presence of five mutations, show radically different properties in terms of susceptibility to the amyloid transformation process. These two forms of transthyretin are the object of analysis. The search for the sources of these differences was carried out by means of a comparative analysis of the structure of these molecules in their native and early intermediate stage forms in the folding process. The criterion for assessing the degree of similarity and differences is the status of the hydrophobic core. The comparison of the level of arrangement of the hydrophobic core and its initial stages is possible thanks to the application of divergence entropy for the early intermediate stage and for the final forms. It was shown that the minimal differences observed in the structure of the hydrophobic core of the forms available in PDB, turned out to be significantly different in the early stage (ES) structure in folding process. The determined values of divergence entropy for both ES forms indicate the presence of the seed of hydrophobic core only in the form resistant to amyloid transformation. In the form of aggressively undergoing amyloid transformation, the structure lacking such a seed is revealed, being a stretched one with a high content of β-type structure. In the discussed case, the active presence of water in the structural transformation of proteins expressed in the fuzzy oil drop model (FOD) is of decisive importance for the generation of the final protein structure. It has been shown that the resistant form tends to generate a centric hydrophobic core with the possibility of creating a globular structure, i.e., a spherical micelle-like form. The aggressively transforming form reveals in the structure of its early intermediate, a tendency to form the ribbon-like micelle as observed in amyloid.
Collapse
|
11
|
Rawat P, Prabakaran R, Kumar S, Gromiha MM. AggreRATE-Pred: a mathematical model for the prediction of change in aggregation rate upon point mutation. Bioinformatics 2020; 36:1439-1444. [PMID: 31599925 DOI: 10.1093/bioinformatics/btz764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION Protein aggregation is a major unsolved problem in biochemistry with implications for several human diseases, biotechnology and biomaterial sciences. A majority of sequence-structural properties known for their mechanistic roles in protein aggregation do not correlate well with the aggregation kinetics. This limits the practical utility of predictive algorithms. RESULTS We analyzed experimental data on 183 unique single point mutations that lead to change in aggregation rates for 23 polypeptides and proteins. Our initial mathematical model obtained a correlation coefficient of 0.43 between predicted and experimental change in aggregation rate upon mutation (P-value <0.0001). However, when the dataset was classified based on protein length and conformation at the mutation sites, the average correlation coefficient almost doubled to 0.82 (range: 0.74-0.87; P-value <0.0001). We observed that distinct sequence and structure-based properties determine protein aggregation kinetics in each class. In conclusion, the protein aggregation kinetics are impacted by local factors and not by global ones, such as overall three-dimensional protein fold, or mechanistic factors such as the presence of aggregation-prone regions. AVAILABILITY AND IMPLEMENTATION The web server is available at http://www.iitm.ac.in/bioinfo/aggrerate-pred/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Puneet Rawat
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - R Prabakaran
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer-Ingelheim Pharmaceutical Inc. Ridgefield, CT, USA
| | - M Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.,Advanced Computational Drug Discovery Unit (ACDD), Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| |
Collapse
|
12
|
Dasari AKR, Hung I, Michael B, Gan Z, Kelly JW, Connors LH, Griffin RG, Lim KH. Structural Characterization of Cardiac Ex Vivo Transthyretin Amyloid: Insight into the Transthyretin Misfolding Pathway In Vivo. Biochemistry 2020; 59:1800-1803. [PMID: 32338497 DOI: 10.1021/acs.biochem.0c00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural characterization of misfolded protein aggregates is essential to understanding the molecular mechanism of protein aggregation associated with various protein misfolding disorders. Here, we report structural analyses of ex vivo transthyretin aggregates extracted from human cardiac tissue. Comparative structural analyses of in vitro and ex vivo transthyretin aggregates using various biophysical techniques revealed that cardiac transthyretin amyloid has structural features similar to those of in vitro transthyretin amyloid. Our solid-state nuclear magnetic resonance studies showed that in vitro amyloid contains extensive nativelike β-sheet structures, while other loop regions including helical structures are disrupted in the amyloid state. These results suggest that transthyretin undergoes a common misfolding and aggregation transition to nativelike aggregation-prone monomers that self-assemble into amyloid precipitates in vitro and in vivo.
Collapse
Affiliation(s)
- Anvesh K R Dasari
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Brian Michael
- Department of Chemistry, Massachuseets Institute of Technology, NW14-3220, 170 Albany Street, Cambridge, Massachusetts 02139-4703, United States
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jeffery W Kelly
- Department of Molecular and Experimental Medicine, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lawreen H Connors
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States
| | - Robert G Griffin
- Department of Chemistry, Massachuseets Institute of Technology, NW14-3220, 170 Albany Street, Cambridge, Massachusetts 02139-4703, United States
| | - Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
13
|
Exploration of the Misfolding Mechanism of Transthyretin Monomer: Insights from Hybrid-Resolution Simulations and Markov State Model Analysis. Biomolecules 2019; 9:biom9120889. [PMID: 31861226 PMCID: PMC6995605 DOI: 10.3390/biom9120889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023] Open
Abstract
Misfolding and aggregation of transthyretin (TTR) is widely known to be responsible for a progressive systemic disorder called amyloid transthyretin (ATTR) amyloidosis. Studies suggest that TTR aggregation is initiated by a rate-limiting dissociation of the homo-tetramer into its monomers, which can rapidly misfold and self-assemble into amyloid fibril. Thus, exploring conformational change involved in TTR monomer misfolding is of vital importance for understanding the pathogenesis of ATTR amyloidosis. In this work, microsecond timescale hybrid-resolution molecular dynamics (MD) simulations combined with Markov state model (MSM) analysis were performed to investigate the misfolding mechanism of the TTR monomer. The results indicate that a macrostate with partially unfolded conformations may serve as the misfolded state of the TTR monomer. This misfolded state was extremely stable with a very large equilibrium probability of about 85.28%. With secondary structure analysis, we found the DAGH sheet in this state to be significantly destroyed. The CBEF sheet was relatively stable and sheet structure was maintained. However, the F-strand in this sheet was likely to move away from E-strand and reform a new β-sheet with the H-strand. This observation is consistent with experimental finding that F and H strands in the outer edge drive the misfolding of TTR. Finally, transition pathways from a near native state to this misfolded macrostate showed that the conformational transition can occur either through a native-like β-sheet intermediates or through partially unfolded intermediates, while the later appears to be the main pathway. As a whole, we identified a potential misfolded state of the TTR monomer and elucidated the misfolding pathway for its conformational transition. This work can provide a valuable theoretical basis for understanding of TTR aggregation and the pathogenesis of ATTR amyloidosis at the atomic level.
Collapse
|
14
|
Liu YT, Yen YJ, Ricardo F, Chang Y, Wu PH, Huang SJ, Lin KP, Yu TY. Biophysical characterization and modulation of Transthyretin Ala97Ser. Ann Clin Transl Neurol 2019; 6:1961-1970. [PMID: 31502419 PMCID: PMC6801203 DOI: 10.1002/acn3.50887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Ala97Ser (A97S) is the major transthyretin (TTR) mutation in Taiwanese patients of familial amyloid polyneuropathy (FAP), characterized by a late‐onset but rapidly deteriorated neuropathy. Tafamidis can restore the stability of some mutant TTR tetramers and slow down the progression of TTR‐FAP. However, there is little understanding of the biophysical features of A97S‐TTR mutant and the pharmacological modulation effect of tafamidis on it. This study aims to delineate the biophysical characteristics of A97S‐TTR and the pharmacological modulation effect of tafamidis on this mutant. Method The stability of TTR tetramers was assessed by urea denaturation and differential scanning calorimetry. Isothermal titration calorimetry (ITC) was used to measure the binding constant of tafamidis to TTR. Nuclear magnetic resonance spectroscopy (NMR) titration experiment was used to map out the tafamidis binding site. Results Chemical and thermal denaturation confirmed the destabilization effect of A97S. Consistent with other the amyloidogenic mutant, A97S‐TTR has slightly lower conformational stability. NMR revealed the binding site of A97S‐TTR with tafamidis is at the thyroxine binding pocket. The ITC experiments documented the high affinity of the binding which can effectively stabilize the A97S‐TTR tetramer. Interpretation This study confirmed the structural modulation effect of tafamidis on A97S‐TTR and implied the potential therapeutic benefit of tafamidis for A97S TTR‐FAP. This approach can be applied to investigate the modulation effect of tafamidis on other rare TTR variants and help to make individualized choices of available treatments for FAP patients.
Collapse
Affiliation(s)
- Yo-Tsen Liu
- Division of Epilepsy, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Jung Yen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Frans Ricardo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Hao Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Kon-Ping Lin
- National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Peripheral Nervous System Disorders, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.,International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Probing conformational changes of monomeric transthyretin with second derivative fluorescence. Sci Rep 2019; 9:10988. [PMID: 31358790 PMCID: PMC6662758 DOI: 10.1038/s41598-019-47230-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
We have studied the intrinsic fluorescence spectra of a monomeric variant of human transthyretin (M-TTR), a protein involved in the transport of the thyroid hormone and retinol and associated with various forms of amyloidosis, extending our analysis to the second order derivative of the spectra. This procedure allowed to identify three peaks readily assigned to Trp41, as the three peaks were also visible in a mutant lacking the other tryptophan (Trp79) and had similar FRET efficiency values with an acceptor molecule positioned at position 10. The wavelength values of the three peaks and their susceptibility to acrylamide quenching revealed that the three corresponding conformers experience different solvent-exposure, polarity of the environment and flexibility. We could monitor the three peaks individually in urea-unfolding and pH-unfolding curves. This revealed changes in the distribution of the corresponding conformers, indicating conformational changes and alterations of the dynamics of the microenvironment that surrounds the associated tryptophan residue in such transitions, but also native-like conformers of such residues in unfolded states. We also found that the amyloidogenic state adopted by M-TTR at mildly low pH has a structural and dynamical microenvironment surrounding Trp41 indistinguishable from that of the fully folded and soluble state at neutral pH.
Collapse
|
16
|
Dasari AKR, Hughes RM, Wi S, Hung I, Gan Z, Kelly JW, Lim KH. Transthyretin Aggregation Pathway toward the Formation of Distinct Cytotoxic Oligomers. Sci Rep 2019; 9:33. [PMID: 30631096 PMCID: PMC6328637 DOI: 10.1038/s41598-018-37230-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/30/2018] [Indexed: 01/12/2023] Open
Abstract
Characterization of small oligomers formed at an early stage of amyloid formation is critical to understanding molecular mechanism of pathogenic aggregation process. Here we identified and characterized cytotoxic oligomeric intermediates populated during transthyretin (TTR) aggregation process. Under the amyloid-forming conditions, TTR initially forms a dimer through interactions between outer strands. The dimers are then associated to form a hexamer with a spherical shape, which serves as a building block to self-assemble into cytotoxic oligomers. Notably, wild-type (WT) TTR tends to form linear oligomers, while a TTR variant (G53A) prefers forming annular oligomers with pore-like structures. Structural analyses of the amyloidogenic intermediates using circular dichroism (CD) and solid-state NMR reveal that the dimer and oligomers have a significant degree of native-like β-sheet structures (35–38%), but with more disordered regions (~60%) than those of native TTR. The TTR variant oligomers are also less structured than WT oligomers. The partially folded nature of the oligomeric intermediates might be a common structural property of cytotoxic oligomers. The higher flexibility of the dimer and oligomers may also compensate for the entropic loss due to the oligomerization of the monomers.
Collapse
Affiliation(s)
- Anvesh K R Dasari
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Sungsool Wi
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - Jeffrey W Kelly
- Department of Molecular and Experimental Medicine, the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
17
|
Dasari AKR, Hung I, Gan Z, Lim KH. Two distinct aggregation pathways in transthyretin misfolding and amyloid formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:344-349. [PMID: 30366153 DOI: 10.1016/j.bbapap.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 01/17/2023]
Abstract
Misfolding and amyloid formation of transthyretin (TTR) is implicated in numerous degenerative diseases. TTR misfolding is greatly accelerated under acidic conditions, and thus most of the mechanistic studies of TTR amyloid formation have been conducted at various acidic pH values (2-5). In this study, we report the effect of pH on TTR misfolding pathways and amyloid structures. Our combined solution and solid-state NMR studies revealed that TTR amyloid formation can proceed via at least two distinct misfolding pathways depending on the acidic conditions. Under mildly acidic conditions (pH 4.4), tetrameric native TTR appears to dissociate to monomers that maintain most of the native-like β-sheet structures. The amyloidogenic protein undergoes a conformational transition to largely unfolded states at more acidic conditions (pH 2.4), leading to amyloid with distinct molecular structures. Aggregation kinetics is also highly dependent upon the acidic conditions. TTR quickly forms moderately ordered amyloids at pH 4.4, while the aggregation kinetics is dramatically reduced at a lower pH of 2.4. The effect of the pathogenic mutations on aggregation kinetics is also markedly different under the two different acidic conditions. Pathogenic TTR variants (V30M and L55P) aggregate more aggressively than WT TTR at pH 4.4. In contrast, the single-point mutations do not affect the aggregation kinetics at the more acidic condition of pH 2.4. Given that the pathogenic mutations lead to more aggressive forms of TTR amyloidoses, the mildly acidic condition might be more suitable for mechanistic studies of TTR misfolding and aggregation.
Collapse
Affiliation(s)
- Anvesh K R Dasari
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
18
|
Leach BI, Zhang X, Kelly JW, Dyson HJ, Wright PE. NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations. Biochemistry 2018; 57:4421-4430. [PMID: 29972637 PMCID: PMC6067956 DOI: 10.1021/acs.biochem.8b00642] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inherited mutations of transthyretin (TTR) destabilize its structure, leading to aggregation and familial amyloid disease. Although numerous crystal structures of wild-type (WT) and mutant TTRs have been determined, they have failed to yield a comprehensive structural explanation for destabilization by pathogenic mutations. To identify structural and dynamic variations that are not readily observed in the crystal structures, we used NMR to study WT TTR and three kinetically and/or thermodynamically destabilized pathogenic variants (V30M, L55P, and V122I). Sequence-corrected chemical shifts reveal important structural differences between WT and mutant TTR. The L55P mutation linked to aggressive early onset cardiomyopathy and polyneuropathy induces substantial structural perturbations in both the DAGH and CBEF β-sheets, whereas the V30M polyneuropathy-linked substitution perturbs primarily the CBEF sheet. In both variants, the structural perturbations propagate across the entire width of the β-sheets from the site of mutation. Structural changes caused by the V122I cardiomyopathy-associated mutation are restricted to the immediate vicinity of the mutation site, directly perturbing the subunit interfaces. NMR relaxation dispersion measurements show that WT TTR and the three pathogenic variants undergo millisecond time scale conformational fluctuations to populate a common excited state with an altered structure in the subunit interfaces. The excited state is most highly populated in L55P. The combined application of chemical shift analysis and relaxation dispersion to these pathogenic variants reveals differences in ground state structure and in the population of a transient excited state that potentially facilitates tetramer dissociation, providing new insights into the molecular mechanism by which mutations promote TTR amyloidosis.
Collapse
Affiliation(s)
- Benjamin I. Leach
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania16802
| | - Jeffery W. Kelly
- Department of Chemistry and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| |
Collapse
|
19
|
Garai K, Posey AE, Li X, Buxbaum JN, Pappu RV. Inhibition of amyloid beta fibril formation by monomeric human transthyretin. Protein Sci 2018; 27:1252-1261. [PMID: 29498118 PMCID: PMC6032350 DOI: 10.1002/pro.3396] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/11/2022]
Abstract
Transthyretin (TTR) is a homotetrameric protein that is found in the plasma and cerebrospinal fluid. Dissociation of TTR tetramers sets off a downhill cascade of amyloid formation through polymerization of monomeric TTR. Interestingly, TTR has an additional, biologically relevant activity, which pertains to its ability to slow the progression of amyloid beta (Aβ) associated pathology in transgenic mice. In vitro, both TTR and a kinetically stable variant of monomeric TTR (M-TTR) inhibit the fibril formation of Aβ1-40/42 molecules. Published evidence suggests that tetrameric TTR binds preferentially to Aβ monomers, thus destabilizing fibril formation by depleting the pool of Aβ monomers from aggregating mixtures. Here, we investigate the effects of M-TTR on the in vitro aggregation of Aβ1-42 . Our data confirm previous observations that fibril formation of Aβ is suppressed in the presence of sub-stoichiometric amounts of M-TTR. Despite this, we find that sub-stoichiometric levels of M-TTR are not bona fide inhibitors of aggregation. Instead, they co-aggregate with Aβ to promote the formation of large, micron-scale insoluble, non-fibrillar amorphous deposits. Based on fluorescence correlation spectroscopy measurements, we find that M-TTR does not interact with monomeric Aβ. Two-color coincidence analysis of the fluorescence bursts of Aβ and M-TTR labeled with different fluorophores shows that M-TTR co-assembles with soluble Aβ aggregates and this appears to drive the co-aggregation into amorphous precipitates. Our results suggest that mimicking the co-aggregation activity with protein-based therapeutics might be a worthwhile strategy for rerouting amyloid beta peptides into inert, insoluble, and amorphous deposits.
Collapse
Affiliation(s)
- Kanchan Garai
- Department of Biomedical Engineering and Center for Biological Systems EngineeringWashington University in St. Louis, One Brookings Drive, Campus Box 1097St. LouisMissouri63130
- TIFR Centre for Interdisciplinary Sciences, 36/P Gopanpally Village, SerilingampallyHyderabad500019India
| | - Ammon E. Posey
- Department of Biomedical Engineering and Center for Biological Systems EngineeringWashington University in St. Louis, One Brookings Drive, Campus Box 1097St. LouisMissouri63130
| | - Xinyi Li
- Department of Molecular and Experimental MedicineThe Scripps Research Institute, 10550 North Torey Pines RoadLa JollaCalifornia92037
| | - Joel N. Buxbaum
- Department of Molecular and Experimental MedicineThe Scripps Research Institute, 10550 North Torey Pines RoadLa JollaCalifornia92037
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biological Systems EngineeringWashington University in St. Louis, One Brookings Drive, Campus Box 1097St. LouisMissouri63130
| |
Collapse
|
20
|
Kinetic analysis of the multistep aggregation pathway of human transthyretin. Proc Natl Acad Sci U S A 2018; 115:E6201-E6208. [PMID: 29915031 DOI: 10.1073/pnas.1807024115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aggregation of transthyretin (TTR) is the causative agent for TTR cardiomyopathy and polyneuropathy amyloidoses. Aggregation is initiated by dissociation of the TTR tetramer into a monomeric intermediate, which self-assembles into amyloid. The coupled multiple-step equilibria and low-concentration, aggregation-prone intermediates are challenging to probe using conventional assays. We report a 19F-NMR assay that leverages a highly sensitive trifluoroacetyl probe at a strategic site that gives distinct 19F chemical shifts for the TTR tetramer and monomeric intermediate and enables direct quantification of their populations during the aggregation process. Integration of real-time 19F-NMR and turbidity measurements as a function of temperature allows kinetic and mechanistic dissection of the aggregation pathway of both wild-type and mutant TTR. At physiological temperature, the monomeric intermediate formed by wild-type TTR under mildly acidic conditions rapidly aggregates into species that are invisible to NMR, leading to loss of the NMR signal at the same rate as the turbidity increase. Lower temperature accelerates tetramer dissociation and decelerates monomer tetramerization and oligomerization via reduced hydrophobic interactions associated with packing of a phenylalanine (F87) into a neighboring protomer. As a result, the intermediate accumulates to a higher level, and formation of higher-order aggregates is delayed. Application of this assay to pathogenic (V30M, L55P, and V122I) and protective (T119M) mutants revealed significant differences in behavior. A monomeric intermediate was observed only for V122I: aggregation of V30M and L55P proceeds without an observable monomeric intermediate, whereas the protective mutant T119M remains resistant to tetramer dissociation and aggregation.
Collapse
|