1
|
Hanafy MS, Sandoval MA, Dao HM, Williams RO, Stachowiak JC, Cui Z. Functional dry powders of connexin-containing extracellular vesicles. Int J Pharm 2024; 663:124576. [PMID: 39134288 DOI: 10.1016/j.ijpharm.2024.124576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a promising drug delivery system. Connectosomes are a specialized type of EVs that contain connexins in their membranes. Connexin is a surface transmembrane protein that forms connexin hemichannels. When a connexin hemichannel on a connectosome docks with another connexin hemichannel of a target cell, they form a gap junction that allows direct intracellular delivery of therapeutic cargos from within the connectosome to the cytoplasm of the recipient cell. In the present study, we tested the feasibility of converting connectosomes into dry powders by (thin-film) freeze-drying to enable their potential storage in temperatures higher than the recommended -80 °C, while maintaining their activity. Connectosomes were isolated from a genetically engineered HeLa cell line that overexpressing connexin-43 subunit protein tagged with red fluorescence protein. To facilitate the testing of the function of the connectosomes, they were loaded with calcein green dye. Calcein green-loaded connectosomes were thin-film freeze-dried with trehalose alone or trehalose and a polyvinylpyrrolidone polymer as lyoprotectant(s) to produce amorphous powders with high glass transition temperatures (>100 °C). Thin-film freeze-drying did not significantly change the morphology and structure of the connectosomes, nor their particle size distribution. Based on data from confocal microscopy, flow cytometry, and fluorescence spectrometry, the connexin hemichannels in the connectosomes reconstituted from the thin-film freeze-dried powder remained functional, allowing the passage of calcein green through the hemichannels and the release of the calcein green from the connectosomes when the channels were opened by chelating calcium in the reconstituted medium. The function of connectosomes was assessed after one month storage at different temperatures. The connexin hemichannels in connectosomes in liquid lost their function when stored at -19.5 ± 2.2 °C or 6.0 ± 0.5 °C for a month, while those in dry powder form remained functional under the same storage conditions. Finally, using doxorubicin-loaded connectosomes, we showed that the connectosomes reconstituted from thin-film freeze-dried powder remained pharmacologically active. These findings demonstrate that (thin-film) freeze-drying represents a viable method to prepare stable and functional powders of EVs that contain connexins in their membranes.
Collapse
Affiliation(s)
- Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States
| | - Michael A Sandoval
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States
| | - Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, Cockrell College of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, United States.
| |
Collapse
|
2
|
Hanafy MS, Cui Z. Connexin-Containing Vesicles for Drug Delivery. AAPS J 2024; 26:20. [PMID: 38267725 DOI: 10.1208/s12248-024-00889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Connexin is a transmembrane protein present on the cell membrane of most cell types. Connexins assemble into a hexameric hemichannel known as connexon that pairs with another hemichannel present on a neighboring cell to form gap junction that acts as a channel or pore for the transport of ions and small molecules between the cytoplasm of the two cells. Extracellular vesicles released from connexin-expressing cells could carry connexin hemichannels on their surface and couple with another connexin hemichannel on a distant recipient cell to allow the transfer of the intravesicular content directly into the cytoplasm. Connexin-containing vesicles can be potentially utilized for intracellular drug delivery. In this review, we introduced cell-derived, connexin-containing extracellular vesicles and cell-free connexin-containing liposomes, methods of preparing them, procedures to load cargos in them, factors regulating the connexin hemichannel activity, (potential) applications of connexin-containing vesicles in drug delivery, and finally the challenges and future directions in realizing the promises of this platform delivery system for (intracellular) drug delivery.
Collapse
Affiliation(s)
- Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
3
|
Yuan C, Gerhards L, Solov'yov IA, Dedek K. Biotin-cGMP and -cAMP are able to permeate through the gap junctions of some amacrine cells in the mouse retina despite their large size. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1334602. [PMID: 38983094 PMCID: PMC11182161 DOI: 10.3389/fopht.2023.1334602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 07/11/2024]
Abstract
Gap junctions transmit electrical signals in neurons and serve metabolic coupling and chemical communication. Gap junctions are made of intercellular channels with large pores, allowing ions and small molecules to permeate. In the mammalian retina, intercellular coupling fulfills many vital functions in visual signal processing but is also implicated in promoting cell death after insults, such as excitotoxicity or hypoxia. Conversely, some studies also suggested a role for retinal gap junctions in neuroprotection. Recently, gap junctions were also advocated as conduits for therapeutic drug delivery in neurodegenerative disorders. This requires the permeation of rather large molecules through retinal gap junctions. However, the permeability of retinal networks for molecules >0.6 kDa has not been tested systematically. Here, we used the cut-loading method and probed gap junctional networks in the mouse retina for their permeability to cGMP and cAMP coupled to Biotin, using the well-characterized tracer Neurobiotin as control. Biotin-cGMP and -cAMP have a molecular weight of >0.8 kDa. We show that they cannot pass the gap junctions of horizontal cells but can permeate through the gap junctions of specific amacrine cells in the inner retina. These amacrine cells do not comprise AII amacrine cells and nitric oxide-releasing amacrine cells but some unknown type. In summary, we show that some retinal gap junctions are large enough to let molecules >0.8 kDa pass, making the intercellular delivery of therapeutic agents - already successfully exploited, for example, in cancer - also feasible in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunxu Yuan
- Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Luca Gerhards
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- CeNaD - Center for Nanoscale Dynamics, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Wang YF, Shen ZF, Xiang FY, Wang H, Zhang P, Zhang Q. The direct transfer approach for transcellular drug delivery. Drug Deliv 2023; 30:2288799. [PMID: 38037327 PMCID: PMC10987047 DOI: 10.1080/10717544.2023.2288799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
A promising paradigm for drug administration that has garnered increasing attention in recent years is the direct transfer (DT) of nanoparticles for transcellular drug delivery. DT requires direct cell-cell contact and facilitates unidirectional and bidirectional matter exchange between neighboring cells. Consequently, DT enables fast and deep penetration of drugs into the targeted tissues. This comprehensive review discusses the direct transfer concept, which can be delineated into the following three distinct modalities: membrane contact-direct transfer, gap junction-mediated direct transfer (GJ-DT), and tunneling nanotubes-mediated direct transfer (TNTs-DT). Further, the intercellular structures for each modality of direct transfer and their respective merits and demerits are summarized. The review also discusses the recent progress on the drugs or drug delivery systems that could activate DT.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fang-yue Xiang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Sihorwala AZ, Lin AJ, Stachowiak JC, Belardi B. Light-Activated Assembly of Connexon Nanopores in Synthetic Cells. J Am Chem Soc 2023; 145:3561-3568. [PMID: 36724060 PMCID: PMC10188233 DOI: 10.1021/jacs.2c12491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During developmental processes and wound healing, activation of living cells occurs with spatiotemporal precision and leads to rapid release of soluble molecular signals, allowing communication and coordination between neighbors. Nonliving systems capable of similar responsive release hold great promise for information transfer in materials and site-specific drug delivery. One nonliving system that offers a tunable platform for programming release is synthetic cells. Encased in a lipid bilayer structure, synthetic cells can be outfitted with molecular conduits that span the bilayer and lead to material exchange. While previous work expressing membrane pore proteins in synthetic cells demonstrated content exchange, user-defined control over release has remained elusive. In mammalian cells, connexon nanopore structures drive content release and have garnered significant interest since they can direct material exchange through intercellular contacts. Here, we focus on connexon nanopores and present activated release of material from synthetic cells in a light-sensitive fashion. To do this, we re-engineer connexon nanopores to assemble after post-translational processing by a protease. By encapsulating proteases in light-sensitive liposomes, we show that assembly of nanopores can be triggered by illumination, resulting in rapid release of molecules encapsulated within synthetic cells. Controlling connexon nanopore activity provides an opportunity for initiating communication with extracellular signals and for transferring molecular agents to the cytoplasm of living cells in a rapid, light-guided manner.
Collapse
Affiliation(s)
- Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Trementozzi AN, Zhao C, Smyth H, Cui Z, Stachowiak JC. Gap Junction-Mediated Delivery of Polymeric Macromolecules. ACS Biomater Sci Eng 2022; 8:1566-1572. [PMID: 35263989 PMCID: PMC9157716 DOI: 10.1021/acsbiomaterials.1c01459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular delivery of therapeutic macromolecules such as proteins, peptides, and nucleic acids remains limited due to inefficient transport across the cellular plasma membrane. Gap junction channels, composed of connexin proteins, provide a mechanism for direct transfer of small molecules across membranes, and recent evidence suggests that the transfer of larger, polymer-like molecules such as microRNAs may be possible. Here, we report direct evidence of gap junction-mediated transfer of polymeric macromolecules. Specifically, we examined the transport of dextran chains with molecular weights ranging from 10 to 70 kDa. We found that dextran chains of up to 40 kDa can diffuse through at least five cell layers in a gap junction-dependent manner within a 30 min time frame. Further, we evaluated the ability of connectosomes, cell-derived vesicles containing functional connexin proteins, to be loaded with dextran chains. By opening connexon hemichannel pores within the membranes of connectosomes, we found that 10 kDa dextran was loaded into more than 90% of vesicles, with reduced levels of loading for dextran chains of larger molecular weight. Upon delivering 10 kDa dextran-loaded connectosomes to cells, we further found that connectosomes transferred these membrane-impermeable molecules to the cellular cytosol with dramatically improved efficiency in comparison to the delivery of free, unencapsulated dextran. Collectively, these results reveal that polymeric macromolecules can be delivered to cells via gap junctions, suggesting that the gap junction route may be useful for the delivery of polymeric therapeutic molecules, such as nucleic acids and peptides.
Collapse
Affiliation(s)
- Andrea N Trementozzi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi Zhao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hugh Smyth
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengrong Cui
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166047. [PMID: 33418036 DOI: 10.1016/j.bbadis.2020.166047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Connexin hemichannels have been implicated in pathology-promoting conditions, including inflammation, numerous widespread human diseases, including cancer and diabetes, and several rare diseases linked to pathological point mutations. METHODS We analysed the literature focusing on antibodies capable of modulating hemichannel function, highlighting generation methods, applications to basic biomedical research and translational potential. RESULTS Anti-hemichannel antibodies generated over the past 3 decades targeted mostly connexin 43, with a focus on cancer treatment. A slow transition from relatively unselective polyclonal antibodies to more selective monoclonal antibodies resulted in few products with interesting characteristics that are under evaluation for clinical trials. Selection of antibodies from combinatorial phage-display libraries, has permitted to engineer a monoclonal antibody that binds to and blocks pathological hemichannels formed by connexin 26, 30 and 32. CONCLUSIONS All known antibodies that modulate connexin hemichannels target the two small extracellular loops of the connexin proteins. The extracellular region of different connexins is highly conserved, and few residues of each connexins are exposed. The search for new antibodies may develop an unprecedented potential for therapeutic applications, as it may benefit tremendously from novel whole-cell screening platforms that permit in situ selection of antibodies against membrane proteins in native state. The demonstrated efficacy of mAbs in reaching and modulating hemichannels in vivo, together with their relative specificity for connexins overlapping epitopes, should hopefully stimulate an interest for widening the scope of anti-hemichannel antibodies. There is no shortage of currently incurable diseases for which therapeutic intervention may benefit from anti-hemichannel antibodies capable of modulating hemichannel function selectively and specifically.
Collapse
|
8
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Trementozzi AN, Hufnagel S, Xu H, Hanafy MS, Rosero Castro F, Smyth HDC, Cui Z, Stachowiak JC. Gap Junction Liposomes for Efficient Delivery of Chemotherapeutics to Solid Tumors. ACS Biomater Sci Eng 2020; 6:4851-4857. [PMID: 33455217 DOI: 10.1021/acsbiomaterials.0c01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic delivery is limited by inefficient transport across cellular membranes. Here, we harness the cellular gap junction network to release therapeutic cargos directly into the cytosol. Specifically, cell-derived vesicles, termed connectosomes, contain gap junction transmembrane proteins that open a direct passageway to the cellular interior. Connectosomes were previously shown to substantially improve chemotherapeutic delivery in vitro. Here, we test connectosomes in vivo, using a murine breast tumor model. We demonstrate that connectosomes improve chemotherapeutic delivery to cellular targets within tumors by up to 16-fold, compared to conventional drug-loaded liposomes, suggesting an efficient alternative pathway for intracellular delivery.
Collapse
Affiliation(s)
- Andrea N Trementozzi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephanie Hufnagel
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Haiyue Xu
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mahmoud S Hanafy
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Felipe Rosero Castro
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hugh D C Smyth
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengrong Cui
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Einfalt T, Garni M, Witzigmann D, Sieber S, Baltisberger N, Huwyler J, Meier W, Palivan CG. Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901923. [PMID: 32099756 PMCID: PMC7029636 DOI: 10.1002/advs.201901923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Indexed: 05/28/2023]
Abstract
Despite huge need in the medical domain and significant development efforts, artificial cells to date have limited composition and functionality. Although some artificial cells have proven successful for producing therapeutics or performing in vitro specific reactions, they have not been investigated in vivo to determine whether they preserve their architecture and functionality while avoiding toxicity. Here, these limitations are overcome and customizable cell mimic is achieved-molecular factories (MFs)-by supplementing giant plasma membrane vesicles derived from donor cells with nanometer-sized artificial organelles (AOs). MFs inherit the donor cell's natural cytoplasm and membrane, while the AOs house reactive components and provide cell-like architecture and functionality. It is demonstrated that reactions inside AOs take place in a close-to-nature environment due to the unprecedented level of complexity in the composition of the MFs. It is further demonstrated that in a zebrafish vertebrate animal model, these cell mimics show no apparent toxicity and retain their integrity and function. The unique advantages of highly varied composition, multicompartmentalized architecture, and preserved functionality in vivo open new biological avenues ranging from the study of biorelevant processes in robust cell-like environments to the production of specific bioactive compounds.
Collapse
Affiliation(s)
- Tomaž Einfalt
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Martina Garni
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Dominik Witzigmann
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Sandro Sieber
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Niklaus Baltisberger
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Jörg Huwyler
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Wolfgang Meier
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| |
Collapse
|
11
|
Ando M, Sasaki Y, Akiyoshi K. Preparation of cationic proteoliposomes using cell-free membrane protein synthesis: the chaperoning effect of cationic liposomes. RSC Adv 2020; 10:28741-28745. [PMID: 35520093 PMCID: PMC9055869 DOI: 10.1039/d0ra05825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Membrane protein reconstituted cationic liposomes are constructed using cell-free membrane protein synthesis in the presence of cationic liposomes. The chaperon effect of cationic liposomal membrane assists in folding the functional conformation of membrane protein. This preparation method enables the provision of the usage of proteoliposomes for drug delivery. The preparation method of cationic proteoliposomes is established using a cell-free membrane protein synthesis in the presence of cationic liposomes.![]()
Collapse
Affiliation(s)
- Mitsuru Ando
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|
12
|
Martins-Marques T, Ribeiro-Rodrigues T, Batista-Almeida D, Aasen T, Kwak BR, Girao H. Biological Functions of Connexin43 Beyond Intercellular Communication. Trends Cell Biol 2019; 29:835-847. [PMID: 31358412 DOI: 10.1016/j.tcb.2019.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Connexin43 (Cx43) is commonly associated with direct cell-cell communication through gap junctions (GJs). However, recent groundbreaking studies have challenged this dogma, implicating Cx43 in other biological processes, such as transcription, metabolism, autophagy, and ion channel trafficking. How Cx43 participates in these processes remains largely unknown, although its high turnover rate, capacity to bind to myriad proteins, and the discovery of truncated isoforms of Cx43, ascribe to this protein unanticipated roles in chief processes that require fine-tuned regulation. Accordingly, Cx43 can be regarded as a central integrative hub to which diverse cues converge to be processed in a concerted manner. In this review, we examine the noncanonical roles of Cx43 and discuss the implications of these functions in human diseases and future therapeutic strategies.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Daniela Batista-Almeida
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Portugal.
| |
Collapse
|
13
|
Connecting Exosomes and Connexins. Cancers (Basel) 2019; 11:cancers11040476. [PMID: 30987321 PMCID: PMC6520873 DOI: 10.3390/cancers11040476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is accomplished by passage of ions and small molecules through gap junction channels in directly contacting cells or by secretion and response to transmitters, hormones and extracellular vesicles in cells that are distant from each other. Recent studies have suggested that there may be overlap of these processes; specifically, small extracellular vesicles may contain subunit gap junction proteins, connexins. We isolated and analyzed extracellular vesicles secreted by cultured microvascular endothelial cells. These vesicles had a diameter of ~120 nm. They contained four exosomal proteins (flotillin-1, CD63, CD81 and Alix) and the gap junction protein, connexin43. They did not contain an endoplasmic reticulum protein (Grp94) or an adherens junction protein (VE-cadherin). Secretion of vesicles was increased by treatment of the cells with staurosporine. Our data confirm that the gap junction protein, connexin43, can be secreted in vesicles with the properties of exosomes. Although the role of vesicular connexin is not clearly known, we speculate that it might participate in docking/fusion of the exosomes with the recipient cell, transmission of vesicular contents, or cellular signaling.
Collapse
|
14
|
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130:3619-3630. [PMID: 29025971 DOI: 10.1242/jcs.200667] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandrine Morel
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Brenda R Kwak
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal .,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|