1
|
El-Ghamry HA, Gaber M, Alkhatib FM, Al Shareef HF, Takroni KM, Fathalla SK. Insight into the synthesis, structure affirmation and catalytic efficiency of divalent and trivalent metal chelates of mandelic acid hydrazone derivative. RSC Adv 2024; 14:30673-30686. [PMID: 39324037 PMCID: PMC11423900 DOI: 10.1039/d4ra05769d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
The current work reports the synthesis of Cr(iii), Mn(ii), Co(ii), Ni(ii) and Cu(ii) chelates of the Schiff base ligand named hydroxy-phenyl-acetic acid (2-hydroxy-naphthalen-1-ylmethylene)-hydrazide with multi-chelation centre toward metal ions. The spectral tools, 1H-NMR, FTIR, mass, UV-vis spectra, and the analytical elemental and thermal analysis, in addition to magnetic moment and conductivity measurements all combined have been applied to conclude the structure and geometry of the synthesized metal complexes. The formed metal chelates have been assured to be formed with the molar compositions of 1 L : 1 M for PANH-Cr, PANH-Mn, PANH-Co, PANH-Ni and 2 L : 1 M for PANH-Cu. All the complexes have been confirmed to be non-electrolytic except the PANH-Mn and PANH-Ni which are 1 : 1 electrolytes. FTIR spectral analysis assured the ligand to act as mono basic bi or tridentate ligand leading to the formation of octahedral complexes with all metals except Cu(ii) complex which assured to has square planar structure. Except PANH-Cr, all the synthesized metal chelates exhibited phenoxazinone synthase like efficacy with varying activity with dramatically high activity for PANH-Mn complex with TOF number of 169.89 h-1.
Collapse
Affiliation(s)
- Hoda A El-Ghamry
- Chemistry Department, Faculty of Science, Tanta University Tanta Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta University Tanta Egypt
| | - Fatmah M Alkhatib
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University Makkah Saudi Arabia
| | - Hossa F Al Shareef
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University Makkah Saudi Arabia
| | - Khadiga M Takroni
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University Makkah Saudi Arabia
| | - Shaimaa K Fathalla
- Chemistry Department, Faculty of Science, Taif University Taif Saudi Arabia
| |
Collapse
|
2
|
Capone M, Parisse G, Narzi D, Guidoni L. Unravelling Mn 4Ca cluster vibrations in the S 1, S 2 and S 3 states of the Kok-Joliot cycle of photosystem II. Phys Chem Chem Phys 2024; 26:20598-20609. [PMID: 39037338 PMCID: PMC11290063 DOI: 10.1039/d4cp01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Vibrational spectroscopy serves as a powerful tool for characterizing intermediate states within the Kok-Joliot cycle. In this study, we employ a QM/MM molecular dynamics framework to calculate the room temperature infrared absorption spectra of the S1, S2, and S3 states via the Fourier transform of the dipole time auto-correlation function. To better analyze the computational data and assign spectral peaks, we introduce an approach based on dipole-dipole correlation function of cluster moieties of the reaction center. Our analysis reveals variation in the infrared signature of the Mn4Ca cluster along the Kok-Joliot cycle, attributed to its increasing symmetry and rigidity resulting from the rising oxidation state of the Mn ions. Furthermore, we successfully assign the debated contributions in the frequency range around 600 cm-1. This computational methodology provides valuable insights for deciphering experimental infrared spectra and understanding the water oxidation process in both biological and artificial systems.
Collapse
Affiliation(s)
- Matteo Capone
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Gianluca Parisse
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Daniele Narzi
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Leonardo Guidoni
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| |
Collapse
|
3
|
Drosou M, Pantazis DA. Comprehensive Evaluation of Models for Ammonia Binding to the Oxygen Evolving Complex of Photosystem II. J Phys Chem B 2024; 128:1333-1349. [PMID: 38299511 PMCID: PMC10875651 DOI: 10.1021/acs.jpcb.3c06304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The identity and insertion pathway of the substrate oxygen atoms that are coupled to dioxygen by the oxygen-evolving complex (OEC) remains a central question toward understanding Nature's water oxidation mechanism. In several studies, ammonia has been used as a small "water analogue" to elucidate the pathway of substrate access to the OEC and to aid in determining which of the oxygen ligands of the tetramanganese cluster are substrates for O-O bond formation. On the basis of structural and spectroscopic investigations, five first-sphere binding modes of ammonia have been suggested, involving either substitution of an existing H2O/OH-/O2- group or addition as an extra ligand to a metal ion of the Mn4CaO5 cluster. Some of these modes, specifically the ones involving substitution, have already been subject to spectroscopy-oriented quantum chemical investigations, whereas more recent suggestions that postulate the addition of ammonia have not been examined so far with quantum chemistry for their agreement with spectroscopic data. Herein, we use a common structural framework and theoretical methodology to evaluate structural models of the OEC that represent all proposed modes of first-sphere ammonia interaction with the OEC in its S2 state. Criteria include energetic, magnetic, kinetic, and spectroscopic properties compared against available experimental EPR, ENDOR, ESEEM, and EDNMR data. Our results show that models featuring ammonia replacing one of the two terminal water ligands on Mn4 align best with experimental data, while they definitively exclude substitution of a bridging μ-oxo ligand as well as incorporation of ammonia as a sixth ligand on Mn1 or Mn4.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Inorganic
Chemistry Laboratory, National and Kapodistrian
University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
4
|
Greife P, Schönborn M, Capone M, Assunção R, Narzi D, Guidoni L, Dau H. The electron-proton bottleneck of photosynthetic oxygen evolution. Nature 2023; 617:623-628. [PMID: 37138082 PMCID: PMC10191853 DOI: 10.1038/s41586-023-06008-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Photosynthesis fuels life on Earth by storing solar energy in chemical form. Today's oxygen-rich atmosphere has resulted from the splitting of water at the protein-bound manganese cluster of photosystem II during photosynthesis. Formation of molecular oxygen starts from a state with four accumulated electron holes, the S4 state-which was postulated half a century ago1 and remains largely uncharacterized. Here we resolve this key stage of photosynthetic O2 formation and its crucial mechanistic role. We tracked 230,000 excitation cycles of dark-adapted photosystems with microsecond infrared spectroscopy. Combining these results with computational chemistry reveals that a crucial proton vacancy is initally created through gated sidechain deprotonation. Subsequently, a reactive oxygen radical is formed in a single-electron, multi-proton transfer event. This is the slowest step in photosynthetic O2 formation, with a moderate energetic barrier and marked entropic slowdown. We identify the S4 state as the oxygen-radical state; its formation is followed by fast O-O bonding and O2 release. In conjunction with previous breakthroughs in experimental and computational investigations, a compelling atomistic picture of photosynthetic O2 formation emerges. Our results provide insights into a biological process that is likely to have occurred unchanged for the past three billion years, which we expect to support the knowledge-based design of artificial water-splitting systems.
Collapse
Affiliation(s)
- Paul Greife
- Department of Physics, Freie Universität, Berlin, Germany
| | | | - Matteo Capone
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Daniele Narzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Holger Dau
- Department of Physics, Freie Universität, Berlin, Germany.
| |
Collapse
|
5
|
Sirohiwal A, Pantazis DA. Functional Water Networks in Fully Hydrated Photosystem II. J Am Chem Soc 2022; 144:22035-22050. [PMID: 36413491 PMCID: PMC9732884 DOI: 10.1021/jacs.2c09121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Water channels and networks within photosystem II (PSII) of oxygenic photosynthesis are critical for enzyme structure and function. They control substrate delivery to the oxygen-evolving center and mediate proton transfer at both the oxidative and reductive endpoints. Current views on PSII hydration are derived from protein crystallography, but structural information may be compromised by sample dehydration and technical limitations. Here, we simulate the physiological hydration structure of a cyanobacterial PSII model following a thorough hydration procedure and large-scale unconstrained all-atom molecular dynamics enabled by massively parallel simulations. We show that crystallographic models of PSII are moderately to severely dehydrated and that this problem is particularly acute for models derived from X-ray free electron laser (XFEL) serial femtosecond crystallography. We present a fully hydrated representation of cyanobacterial PSII and map all water channels, both static and dynamic, associated with the electron donor and acceptor sides. Among them, we describe a series of transient channels and the attendant conformational gating role of protein components. On the acceptor side, we characterize a channel system that is absent from existing crystallographic models but is likely functionally important for the reduction of the terminal electron acceptor plastoquinone QB. The results of the present work build a foundation for properly (re)evaluating crystallographic models and for eliciting new insights into PSII structure and function.
Collapse
|
6
|
Mäusle SM, Abzaliyeva A, Greife P, Simon PS, Perez R, Zilliges Y, Dau H. Activation energies for two steps in the S 2→ S 3 transition of photosynthetic water oxidation from time-resolved single-frequency infrared spectroscopy. J Chem Phys 2020; 153:215101. [PMID: 33291916 DOI: 10.1063/5.0027995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mechanism of water oxidation by the Photosystem II (PSII) protein-cofactor complex is of high interest, but specifically, the crucial coupling of protonation dynamics to electron transfer (ET) and dioxygen chemistry remains insufficiently understood. We drove spinach-PSII membranes by nanosecond-laser flashes synchronously through the water-oxidation cycle and traced the PSII processes by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of symmetric carboxylate vibrations of protein side chains. After the collection of IR-transients from 100 ns to 1 s, we analyzed the proton-removal step in the S2 ⇒ S3 transition, which precedes the ET that oxidizes the Mn4CaOx-cluster. Around 1400 cm-1, pronounced changes in the IR-transients reflect this pre-ET process (∼40 µs at 20 °C) and the ET step (∼300 µs at 20 °C). For transients collected at various temperatures, unconstrained multi-exponential simulations did not provide a coherent set of time constants, but constraining the ET time constants to previously determined values solved the parameter correlation problem and resulted in an exceptionally high activation energy of 540 ± 30 meV for the pre-ET step. We assign the pre-ET step to deprotonation of a group that is re-protonated by accepting a proton from the substrate-water, which binds concurrently with the ET step. The analyzed IR-transients disfavor carboxylic-acid deprotonation in the pre-ET step. Temperature-dependent amplitudes suggest thermal equilibria that determine how strongly the proton-removal step is reflected in the IR-transients. Unexpectedly, the proton-removal step is only weakly reflected in the 1400 cm-1 transients of PSII core complexes of a thermophilic cyanobacterium (T. elongatus).
Collapse
Affiliation(s)
- Sarah M Mäusle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Aiganym Abzaliyeva
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Paul Greife
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Philipp S Simon
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebeca Perez
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Yvonne Zilliges
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
7
|
Ghosh I, Banerjee G, Reiss K, Kim CJ, Debus RJ, Batista VS, Brudvig GW. D1-S169A substitution of photosystem II reveals a novel S 2-state structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148301. [PMID: 32860756 DOI: 10.1016/j.bbabio.2020.148301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
In photosystem II (PSII), photosynthetic water oxidation occurs at the O2-evolving complex (OEC), a tetramanganese-calcium cluster that cycles through light-induced redox intermediates (S0-S4) to produce oxygen from two substrate water molecules. The OEC is surrounded by a hydrogen-bonded network of amino-acid residues that plays a crucial role in proton transfer and substrate water delivery. Previously, we found that D1-S169 was crucial for water oxidation and its mutation to alanine perturbed the hydrogen-bonding network. In this study, we demonstrate that the activation energy for the S2 to S1 transition of D1-S169A PSII is higher than wild-type PSII with a ~1.7-2.7× slower rate of charge recombination with QA- relative to wild-type PSII. Arrhenius analysis of the decay kinetics shows an Ea of 5.87 ± 1.15 kcal mol-1 for decay back to the S1 state, compared to 0.80 ± 0.13 kcal mol-1 for the wild-type S2 state. In addition, we find that ammonia does not affect the S2-state EPR signal, indicating that ammonia does not bind to the Mn cluster in D1-S169A PSII. Finally, a QM/MM analysis indicates that an additional water molecule binds to the Mn4 ion in place of an oxo ligand O5 in the S2 state of D1-S169A PSII. The altered S2 state of D1-S169A PSII provides insight into the S2➔S3 state transition.
Collapse
Affiliation(s)
- Ipsita Ghosh
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Gourab Banerjee
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Christopher J Kim
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA.
| |
Collapse
|
8
|
Kato Y, Haniu S, Nakajima Y, Akita F, Shen JR, Noguchi T. FTIR Microspectroscopic Analysis of the Water Oxidation Reaction in a Single Photosystem II Microcrystal. J Phys Chem B 2020; 124:121-127. [PMID: 31825617 DOI: 10.1021/acs.jpcb.9b10154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcrystals of photosystem II (PSII) have recently been used to investigate the intermediate structures of the water oxidizing complex during water oxidation by serial femtosecond crystallography using X-ray free electron lasers. To clarify the water oxidation mechanism, it is crucial to know whether the reaction proceeds properly in the microcrystals. In this work, we monitored the water oxidation reaction in a single PSII microcrystal using Fourier transform infrared (FTIR) microspectroscopy with the transmission method. Flash-induced micro-FTIR difference spectra of S-state transitions in a PSII microcrystal showed features virtually identical to the corresponding spectra previously obtained using the attenuated total reflection method for multiple microcrystals, representing the reactions near the crystal surface, as well as the spectra in solution. This observation indicates that the reaction processes of water oxidation proceed with relatively high efficiencies retaining native intermediate structures in the entire inside of a PSII microcrystal.
Collapse
Affiliation(s)
- Yuki Kato
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Satoshi Haniu
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho , Kawaguchi, Saitama 332-0012 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| |
Collapse
|
9
|
Assunção R, Zaharieva I, Dau H. Ammonia as a substrate-water analogue in photosynthetic water oxidation: Influence on activation barrier of the O2-formation step. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:533-540. [DOI: 10.1016/j.bbabio.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/15/2022]
|
10
|
The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. INORGANICS 2019. [DOI: 10.3390/inorganics7040055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The catalytic cycle of the oxygen-evolving complex (OEC) of photosystem II (PSII) comprises five intermediate states Si (i = 0–4), from the most reduced S0 state to the most oxidized S4, which spontaneously evolves dioxygen. The precise geometric and electronic structure of the Si states, and hence the mechanism of O–O bond formation in the OEC, remain under investigation, particularly for the final steps of the catalytic cycle. Recent advances in protein crystallography based on X-ray free-electron lasers (XFELs) have produced new structural models for the S3 state, which indicate that two of the oxygen atoms of the inorganic Mn4CaO6 core of the OEC are in very close proximity. This has been interpreted as possible evidence for “early-onset” O–O bond formation in the S3 state, as opposed to the more widely accepted view that the O–O bond is formed in the final state of the cycle, S4. Peroxo or superoxo formation in S3 has received partial support from computational studies. Here, a brief overview is provided of spectroscopic information, recent crystallographic results, and computational models for the S3 state. Emphasis is placed on computational S3 models that involve O–O formation, which are discussed with respect to their agreement with structural information, experimental evidence from various spectroscopic studies, and substrate exchange kinetics. Despite seemingly better agreement with some of the available crystallographic interpretations for the S3 state, models that implicate early-onset O–O bond formation are hard to reconcile with the complete line of experimental evidence, especially with X-ray absorption, X-ray emission, and magnetic resonance spectroscopic observations. Specifically with respect to quantum chemical studies, the inconclusive energetics for the possible isoforms of S3 is an acute problem that is probably beyond the capabilities of standard density functional theory.
Collapse
|
11
|
Das A, Chakraborty M, Maity S, Ghosh A. The catalytic activities and magnetic behaviours of rare μ3-chlorido and μ1,1,1-azido bridged defective dicubane tetranuclear Mn(ii) complexes. Dalton Trans 2019; 48:9342-9356. [DOI: 10.1039/c9dt01567a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A μ3-chlorido and a μ1,1,1-azido bridged defective dicubane tetranuclear Mn(ii) complexes of polynucleating Mannich base ligand show significant catalytic oxidase activities and are antiferromagnetically coupled which is rationalized by DFT calculations.
Collapse
Affiliation(s)
- Avijit Das
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Maharudra Chakraborty
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Souvik Maity
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Ashutosh Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
12
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Yata H, Noguchi T. Mechanism of Methanol Inhibition of Photosynthetic Water Oxidation As Studied by Fourier Transform Infrared Difference and Time-Resolved Infrared Spectroscopies. Biochemistry 2018; 57:4803-4815. [DOI: 10.1021/acs.biochem.8b00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haruna Yata
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Kato Y, Akita F, Nakajima Y, Suga M, Umena Y, Shen JR, Noguchi T. Fourier Transform Infrared Analysis of the S-State Cycle of Water Oxidation in the Microcrystals of Photosystem II. J Phys Chem Lett 2018; 9:2121-2126. [PMID: 29620370 DOI: 10.1021/acs.jpclett.8b00638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photosynthetic water oxidation is performed in photosystem II (PSII) through a light-driven cycle of intermediates called S states (S0-S4) at the water oxidizing center. Time-resolved serial femtosecond crystallography (SFX) has recently been applied to the microcrystals of PSII to obtain the structural information on these intermediates. However, it remains unanswered whether the reactions efficiently proceed throughout the S-state cycle retaining the native structures of the intermediates in PSII crystals. We investigated the water oxidation reactions in the PSII microcrystals using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. In comparison with the FTIR spectra in solution, it was shown that all of the metastable intermediates in the microcrystals retained their native structures, and the efficiencies of the S-state transitions remained relatively high, although those of the S2 → S3 and S3 → S0 transitions were slightly lowered possibly due to some restriction of water movement in the crystals.
Collapse
Affiliation(s)
- Yuki Kato
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8602 , Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
- Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho , Kawaguchi, Saitama 332-0012 , Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8602 , Japan
| |
Collapse
|