1
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Swint-Kruse L, Dougherty LL, Page B, Wu T, O’Neil PT, Prasannan CB, Timmons C, Tang Q, Parente DJ, Sreenivasan S, Holyoak T, Fenton AW. PYK-SubstitutionOME: an integrated database containing allosteric coupling, ligand affinity and mutational, structural, pathological, bioinformatic and computational information about pyruvate kinase isozymes. Database (Oxford) 2023; 2023:baad030. [PMID: 37171062 PMCID: PMC10176505 DOI: 10.1093/database/baad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Interpreting changes in patient genomes, understanding how viruses evolve and engineering novel protein function all depend on accurately predicting the functional outcomes that arise from amino acid substitutions. To that end, the development of first-generation prediction algorithms was guided by historic experimental datasets. However, these datasets were heavily biased toward substitutions at positions that have not changed much throughout evolution (i.e. conserved). Although newer datasets include substitutions at positions that span a range of evolutionary conservation scores, these data are largely derived from assays that agglomerate multiple aspects of function. To facilitate predictions from the foundational chemical properties of proteins, large substitution databases with biochemical characterizations of function are needed. We report here a database derived from mutational, biochemical, bioinformatic, structural, pathological and computational studies of a highly studied protein family-pyruvate kinase (PYK). A centerpiece of this database is the biochemical characterization-including quantitative evaluation of allosteric regulation-of the changes that accompany substitutions at positions that sample the full conservation range observed in the PYK family. We have used these data to facilitate critical advances in the foundational studies of allosteric regulation and protein evolution and as rigorous benchmarks for testing protein predictions. We trust that the collected dataset will be useful for the broader scientific community in the further development of prediction algorithms. Database URL https://github.com/djparente/PYK-DB.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Larissa L Dougherty
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Braelyn Page
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Tiffany Wu
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Pierce T O’Neil
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Charulata B Prasannan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Cody Timmons
- Chemistry Department, Southwestern Oklahoma State University, 100 Campus Dr., Weatherford, OK 73096, USA
| | - Qingling Tang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Daniel J Parente
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
- Department of Family Medicine and Community Health, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Shwetha Sreenivasan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Todd Holyoak
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Apostolidi M, Vathiotis IA, Muthusamy V, Gaule P, Gassaway BM, Rimm DL, Rinehart J. Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes. Cancer Res 2021; 81:4346-4359. [PMID: 34185676 PMCID: PMC8373815 DOI: 10.1158/0008-5472.can-20-4190] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 01/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with low survival rate and a lack of biomarkers and targeted treatments. Here, we target pyruvate kinase M2 (PKM2), a key metabolic component of oncogenesis. In patients with TNBC, PKM2pS37 was identified as a prominent phosphoprotein corresponding to the aggressive breast cancer phenotype that showed a characteristic nuclear staining pattern and prognostic value. Phosphorylation of PKM2 at S37 was connected with a cyclin-dependent kinase (CDK) pathway in TNBC cells. In parallel, pyruvate kinase activator TEPP-46 bound PKM2pS37 and reduced its nuclear localization. In a TNBC mouse xenograft model, treatment with either TEPP-46 or the potent CDK inhibitor dinaciclib reduced tumor growth and diminished PKM2pS37. Combinations of dinaciclib with TEPP-46 reduced cell invasion, impaired redox balance, and triggered cancer cell death. Collectively, these data support an approach to identify PKM2pS37-positive TNBC and target the PKM2 regulatory axis as a potential treatment. SIGNIFICANCE: PKM2 phosphorylation marks aggressive breast cancer cell phenotypes and targeting PKM2pS37 could be an effective therapeutic approach for treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
- Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Ioannis A Vathiotis
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Viswanathan Muthusamy
- Yale Center for Precision Cancer Modeling, Yale University School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Patricia Gaule
- Specialized Translational Services Laboratory, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Brandon M Gassaway
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
- Systems Biology Institute, Yale University, West Haven, Connecticut
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
- Systems Biology Institute, Yale University, West Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Irokawa H, Numasaki S, Kato S, Iwai K, Inose-Maruyama A, Ohdate T, Hwang GW, Toyama T, Watanabe T, Kuge S. Comprehensive analyses of the cysteine thiol oxidation of PKM2 reveal the effects of multiple oxidation on cellular oxidative stress response. Biochem J 2021; 478:1453-1470. [PMID: 33749780 DOI: 10.1042/bcj20200897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Redox regulation of proteins via cysteine residue oxidation is involved in the control of various cellular signal pathways. Pyruvate kinase M2 (PKM2), a rate-limiting enzyme in glycolysis, is critical for the metabolic shift from glycolysis to the pentose phosphate pathway under oxidative stress in cancer cell growth. The PKM2 tetramer is required for optimal pyruvate kinase (PK) activity, whereas the inhibition of inter-subunit interaction of PKM2 induced by Cys358 oxidation has reduced PK activity. In the present study, we identified three oxidation-sensitive cysteine residues (Cys358, Cys423 and Cys424) responsible for four oxidation forms via the thiol oxidant diamide and/or hydrogen peroxide (H2O2). Possibly due to obstruction of the dimer-dimer interface, H2O2-induced sulfenylation (-SOH) and diamide-induced modification at Cys424 inhibited tetramer formation and PK activity. Cys423 is responsible for intermolecular disulfide bonds with heterologous proteins via diamide. Additionally, intramolecular polysulphide linkage (-Sn-, n ≧ 3) between Cys358 and an unidentified PKM2 Cys could be induced by diamide. We observed that cells expressing the oxidation-resistant PKM2 (PKM2C358,424A) produced more intracellular reactive oxygen species (ROS) and exhibited greater sensitivity to ROS-generating reagents and ROS-inducible anti-cancer drugs compared with cells expressing wild-type PKM2. These results highlight the possibility that PKM2 inhibition via Cys358 and Cys424 oxidation contributes to eliminating excess ROS and oxidative stress.
Collapse
Affiliation(s)
- Hayato Irokawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Satoshi Numasaki
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Shin Kato
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kenta Iwai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Atsushi Inose-Maruyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Takumi Ohdate
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Toshihiko Watanabe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Shusuke Kuge
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| |
Collapse
|
5
|
Nandi S, Razzaghi M, Srivastava D, Dey M. Structural basis for allosteric regulation of pyruvate kinase M2 by phosphorylation and acetylation. J Biol Chem 2021; 295:17425-17440. [PMID: 33453989 DOI: 10.1074/jbc.ra120.015800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme and transcriptional coactivator and is critical for tumor metabolism. In cancer cells, native tetrameric PKM2 is phosphorylated or acetylated, which initiates a switch to a dimeric/monomeric form that translocates into the nucleus, causing oncogene transcription. However, it is not known how these post-translational modifications (PTMs) disrupt the oligomeric state of PKM2. We explored this question via crystallographic and biophysical analyses of PKM2 mutants containing residues that mimic phosphorylation and acetylation. We find that the PTMs elicit major structural reorganization of the fructose 1,6-bisphosphate (FBP), an allosteric activator, binding site, impacting the interaction with FBP and causing a disruption in oligomerization. To gain insight into how these modifications might cause unique outcomes in cancer cells, we examined the impact of increasing the intracellular pH (pHi) from ∼7.1 (in normal cells) to ∼7.5 (in cancer cells). Biochemical studies of WT PKM2 (wtPKM2) and the two mimetic variants demonstrated that the activity decreases as the pH is increased from 7.0 to 8.0, and wtPKM2 is optimally active and amenable to FBP-mediated allosteric regulation at pHi 7.5. However, the PTM mimetics exist as a mixture of tetramer and dimer, indicating that physiologically dimeric fraction is important and might be necessary for the modified PKM2 to translocate into the nucleus. Thus, our findings provide insight into how PTMs and pH regulate PKM2 and offer a broader understanding of its intricate allosteric regulation mechanism by phosphorylation or acetylation.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Mishtu Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
6
|
Nandi S, Dey M. Biochemical and structural insights into how amino acids regulate pyruvate kinase muscle isoform 2. J Biol Chem 2020; 295:5390-5403. [PMID: 32144209 PMCID: PMC7170521 DOI: 10.1074/jbc.ra120.013030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme involved in ATP generation and critical for cancer metabolism. PKM2 is expressed in many human cancers and is regulated by complex mechanisms that promote tumor growth and proliferation. Therefore, it is considered an attractive therapeutic target for modulating tumor metabolism. Various stimuli allosterically regulate PKM2 by cycling it between highly active and less active states. Several small molecules activate PKM2 by binding to its intersubunit interface. Serine and cysteine serve as an activator and inhibitor of PKM2, respectively, by binding to its amino acid (AA)-binding pocket, which therefore represents a potential druggable site. Despite binding similarly to PKM2, how cysteine and serine differentially regulate this enzyme remains elusive. Using kinetic analyses, fluorescence binding, X-ray crystallography, and gel filtration experiments with asparagine, aspartate, and valine as PKM2 ligands, we examined whether the differences in the side-chain polarity of these AAs trigger distinct allosteric responses in PKM2. We found that Asn (polar) and Asp (charged) activate PKM2 and that Val (hydrophobic) inhibits it. The results also indicate that both Asn and Asp can restore the activity of Val-inhibited PKM2. AA-bound crystal structures of PKM2 displayed distinctive interactions within the binding pocket, causing unique allosteric effects in the enzyme. These structure-function analyses of AA-mediated PKM2 regulation shed light on the chemical requirements in the development of mechanism-based small-molecule modulators targeting the AA-binding pocket of PKM2 and provide broader insights into the regulatory mechanisms of complex allosteric enzymes.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Mishtu Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
7
|
Kumar S, Patel AK. Purification and Characterization of Prolyl Hydroxylase 3/Pyruvate Kinase Isoform 2 Protein Complex. Mol Biotechnol 2019; 62:111-118. [PMID: 31760602 DOI: 10.1007/s12033-019-00228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The prolyl hydroxylase 3 (PHD3) protein is less abundant in normal oxygen conditions (normoxia) but increases under deficient oxygen condition (hypoxia). Since cancerous cells often thrive in hypoxic conditions and predominantly express the Pyruvate kinase isoforms 2 (PKM2), the PHD3/PKM2 interaction might be particularly important in cancer development. In the present study, the PHD3/PKM2 complex was co-expressed and purified by size-exclusion chromatography. The interaction of PHD3 with PKM2 was confirmed in Native gel as well as western blot analysis. The PHD3/PKM2 complex formed discreet crystals under suitable conditions, and diffraction data revealed that crystal belonged to the P1 space group with 3.0 Å resolution. This is the first crystal report of PHD3/PKM2 complex as well as this study demonstrates a direct physical binding through protein-protein interaction. The structural analysis of complex will provide the information regarding the amino acid residues critical for the catalytic mechanism. Based on the structural information thus obtained, pharmacological interference with the PHD3/PKM2 interaction could be used as a novel strategy to reduce the cancer progression.
Collapse
Affiliation(s)
- Sunil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
8
|
Srivastava D, Nandi S, Dey M. Mechanistic and Structural Insights into Cysteine-Mediated Inhibition of Pyruvate Kinase Muscle Isoform 2. Biochemistry 2019; 58:3669-3682. [PMID: 31386812 DOI: 10.1021/acs.biochem.9b00349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer cells regulate key enzymes in the glycolytic pathway to control the glycolytic flux, which is necessary for their growth and proliferation. One of the enzymes is pyruvate kinase muscle isoform 2 (PKM2), which is allosterically regulated by various small molecules. Using detailed biochemical and kinetic studies, we demonstrate that cysteine inhibits wild-type (wt) PKM2 by shifting from an active tetramer to a mixture of a tetramer and a less active dimer/monomer equilibrium and that the inhibition is dependent on cysteine concentration. The cysteine-mediated PKM2 inhibition is reversed by fructose 1,6-bisphosphate, an allosteric activator of PKM2. Furthermore, kinetic studies using two dimeric PKM2 variants, S437Y PKM2 and G415R PKM2, show that the reversal is caused by the tetramerization of wtPKM2. The crystal structure of the wtPKM2-Cys complex was determined at 2.25 Å, which showed that cysteine is held to the amino acid binding site via its main chain groups, similar to that observed for phenylalanine, alanine, serine, and tryptophan. Notably, ligand binding studies using fluorescence and isothermal titration calorimetry show that the presence of phosphoenolpyruvate alters the binding affinities of amino acids for wtPKM2 and vice versa, thereby unravelling the existence of a functionally bidirectional coupling between the amino acid binding site and the active site of wtPKM2.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Chemistry , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Suparno Nandi
- Department of Chemistry , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Mishtu Dey
- Department of Chemistry , The University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|