1
|
Wakisaka R, Yamaki H, Kono M, Inoue T, Sato R, Komatsuda H, Ohara K, Kosaka A, Ohkuri T, Nagato T, Kishibe K, Nakayama K, Kobayashi H, Kumai T, Takahara M. Hypoxia-Targeted Immunotherapy with PD-1 Blockade in Head and Neck Cancer. Cancers (Basel) 2024; 16:3013. [PMID: 39272872 PMCID: PMC11394489 DOI: 10.3390/cancers16173013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Intratumoral hypoxia is associated with tumor progression, aggressiveness, and therapeutic resistance in several cancers. Hypoxia causes cancer cells to experience replication stress, thereby activating DNA damage and repair pathways. MutT homologue-1 (MTH1, also known as NUDT1), a member of the Nudix family, maintains the genomic integrity and viability of tumor cells in the hypoxic tumor microenvironment. Although hypoxia is associated with poor prognosis and can cause therapeutic resistance by regulating the microenvironment, it has not been considered a treatable target in cancer. This study aimed to investigate whether hypoxia-induced MTH1 is a useful target for immunotherapy and whether hypoxic conditions influence the antitumor activity of immune cells. Our results showed that MTH1 expression was elevated under hypoxic conditions in head and neck cancer cell lines. Furthermore, we identified a novel MTH1-targeting epitope peptide that can activate peptide-specific CD4+ helper T cells with cytotoxic activity. The proliferation and cytotoxic activity of T cells were maintained under hypoxic conditions, and PD-1 blockade further augmented the cytotoxicity. These results indicate that MTH1-targeted immunotherapy combined with checkpoint blockade can be an effective strategy for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
- Department of Innovative Head & Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Koh Nakayama
- Department of Pharmacology, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
- Department of Innovative Head & Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan
| |
Collapse
|
2
|
Shen J, Guillén Mancina E, Chen S, Manolakou T, Gad H, Warpman Berglund U, Sanjiv K, Helleday T. Mitotic MTH1 inhibitor TH1579 induces PD-L1 expression and inflammatory response through the cGAS-STING pathway. Oncogenesis 2024; 13:17. [PMID: 38796460 PMCID: PMC11127983 DOI: 10.1038/s41389-024-00518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The mitotic MTH1 inhibitor TH1579 is a dual inhibitor that inhibits mitosis and incorporation of oxidative DNA damage and leads to cancer-specific cell death. The response to immune checkpoint inhibitor (ICI) treatment is often augmented by DNA damaging agents through the cGAS-STING pathway. This study investigates whether TH1579 can improve the efficacy of immune checkpoint blockades through its immunomodulatory properties. Various human and murine cancer cell lines were treated with mitotic MTH1i TH1579, and the expression of PD-L1 and T-cell infiltration-related chemokines was analysed by flow cytometry and real-time qPCR. Syngeneic mouse models were established to examine the combined effect of TH1579 and PD-L1 blockade. In our investigation, we found that TH1579 upregulates PD-L1 expression at both the protein and mRNA levels in human cancer cell lines. However, in murine cell lines, the increase was less pronounced. An in vivo experiment in a syngeneic mouse melanoma model showed that TH1579 treatment significantly increased the efficacy of atezolizumab, an anti-PD-L1 antibody, compared to vehicle or atezolizumab monotherapy. Furthermore, TH1579 exhibited immune-modulatory properties, elevating cytokines such as IFN-β and chemokines including CCL5 and CXCL10, in a cGAS-STING pathway-dependent manner. In conclusion, TH1579 has the potential to improve ICI treatment by modulating immune checkpoint-related proteins and pathways.
Collapse
Affiliation(s)
- Jianyu Shen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emilio Guillén Mancina
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shenyu Chen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodora Manolakou
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, 11334, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Medical School, S10 2RX, Sheffield, UK.
| |
Collapse
|
3
|
Structural Insight into Molecular Inhibitory Mechanism of InsP 6 on African Swine Fever Virus mRNA-Decapping Enzyme g5Rp. J Virol 2022; 96:e0190521. [PMID: 35481780 PMCID: PMC9131872 DOI: 10.1128/jvi.01905-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Removal of 5′ cap on cellular mRNAs by the African swine fever virus (ASFV) decapping enzyme g5R protein (g5Rp) is beneficial to viral gene expression during the early stages of infection. As the only nucleoside diphosphate-linked moiety X (Nudix) decapping enzyme encoded in the ASFV genome, g5Rp works in both the degradation of cellular mRNA and the hydrolyzation of the diphosphoinositol polyphosphates. Here, we report the structures of dimeric g5Rp and its complex with inositol hexakisphosphate (InsP6). The two g5Rp protomers interact head to head to form a dimer, and the dimeric interface is formed by extensive polar and nonpolar interactions. Each protomer is composed of a unique N-terminal helical domain and a C-terminal classic Nudix domain. As g5Rp is an mRNA-decapping enzyme, we identified key residues, including K8, K94, K95, K98, K175, R221, and K243 located on the substrate RNA binding interfaces of g5Rp which are important to RNA binding and decapping enzyme activity. Furthermore, the g5Rp-mediated mRNA decapping was inhibited by InsP6. The g5Rp-InsP6 complex structure showed that the InsP6 molecules occupy the same regions that primarily mediate g5Rp-RNA interaction, elucidating the roles of InsP6 in the regulation of the viral decapping activity of g5Rp in mRNA degradation. Collectively, these results provide the structural basis of interaction between RNA and g5Rp and highlight the inhibitory mechanism of InsP6 on mRNA decapping by g5Rp. IMPORTANCE ASF is a highly contagious hemorrhagic viral disease in domestic pigs which causes high mortality. Currently, there are still no effective vaccines or specific drugs available against this particular virus. The protein g5Rp is the only viral mRNA-decapping enzyme, playing an essential role in the machinery assembly of mRNA regulation and translation initiation. In this study, we solved the crystal structures of g5Rp dimer and complex with InsP6. Structure-based mutagenesis studies revealed critical residues involved in a candidate RNA binding region, which also play pivotal roles in complex with InsP6. Notably, InsP6 can inhibit g5Rp activity by competitively blocking the binding of substrate mRNA to the enzyme. Our structure-function studies provide the basis for potential anti-ASFV inhibitor designs targeting the critical enzyme.
Collapse
|
4
|
Scaletti ER, Vallin KS, Bräutigam L, Sarno A, Warpman Berglund U, Helleday T, Stenmark P, Jemth AS. MutT homologue 1 (MTH1) removes N6-methyl-dATP from the dNTP pool. J Biol Chem 2020; 295:4761-4772. [PMID: 32144205 PMCID: PMC7152754 DOI: 10.1074/jbc.ra120.012636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP-bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site subpocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1-catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.
Collapse
Affiliation(s)
- Emma Rose Scaletti
- Department of Biochemistry and Biophysics, Stockholm University S-106 91, Stockholm, Sweden
- Department of Experimental Medical Science, Lund University, Lund 221 00, Sweden
| | - Karl S Vallin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Lars Bräutigam
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Pathology, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University S-106 91, Stockholm, Sweden
- Department of Experimental Medical Science, Lund University, Lund 221 00, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| |
Collapse
|
5
|
The MTH1 inhibitor TH588 is a microtubule-modulating agent that eliminates cancer cells by activating the mitotic surveillance pathway. Sci Rep 2019; 9:14667. [PMID: 31604991 PMCID: PMC6789014 DOI: 10.1038/s41598-019-51205-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
The mut-T homolog-1 (MTH1) inhibitor TH588 has shown promise in preclinical cancer studies but its targeting specificity has been questioned. Alternative mechanisms for the anti-cancer effects of TH588 have been suggested but the question remains unresolved. Here, we performed an unbiased CRISPR screen on human lung cancer cells to identify potential mechanisms behind the cytotoxic effect of TH588. The screen identified pathways and complexes involved in mitotic spindle regulation. Using immunofluorescence and live cell imaging, we showed that TH588 rapidly reduced microtubule plus-end mobility, disrupted mitotic spindles, and prolonged mitosis in a concentration-dependent but MTH1-independent manner. These effects activated a USP28-p53 pathway – the mitotic surveillance pathway – that blocked cell cycle reentry after prolonged mitosis; USP28 acted upstream of p53 to arrest TH588-treated cells in the G1-phase of the cell cycle. We conclude that TH588 is a microtubule-modulating agent that activates the mitotic surveillance pathway and thus prevents cancer cells from re-entering the cell cycle.
Collapse
|
6
|
Michel M, Visnes T, Homan EJ, Seashore-Ludlow B, Hedenström M, Wiita E, Vallin K, Paulin CBJ, Zhang J, Wallner O, Scobie M, Schmidt A, Jenmalm-Jensen A, Warpman Berglund U, Helleday T. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS OMEGA 2019; 4:11642-11656. [PMID: 31460271 PMCID: PMC6682003 DOI: 10.1021/acsomega.9b00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA.
Collapse
Affiliation(s)
- Maurice Michel
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Torkild Visnes
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, N-7465 Trondheim, Norway
| | - Evert J. Homan
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | | | - Elisée Wiita
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Karl Vallin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Cynthia B. J. Paulin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Jiaxi Zhang
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Olov Wallner
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Martin Scobie
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Andreas Schmidt
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Annika Jenmalm-Jensen
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Sheffield
Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, S10 2RX Sheffield, U.K.
| |
Collapse
|
7
|
Abstract
7,8-Dihydro-8-oxoguanine (oxoG) is the most abundant oxidative DNA lesion with dual coding properties. It forms both Watson–Crick (anti)oxoG:(anti)C and Hoogsteen (syn)oxoG:(anti)A base pairs without a significant distortion of a B-DNA helix. DNA polymerases bypass oxoG but the accuracy of nucleotide incorporation opposite the lesion varies depending on the polymerase-specific interactions with the templating oxoG and incoming nucleotides. High-fidelity replicative DNA polymerases read oxoG as a cognate base for A while treating oxoG:C as a mismatch. The mutagenic effects of oxoG in the cell are alleviated by specific systems for DNA repair and nucleotide pool sanitization, preventing mutagenesis from both direct DNA oxidation and oxodGMP incorporation. DNA translesion synthesis could provide an additional protective mechanism against oxoG mutagenesis in cells. Several human DNA polymerases of the X- and Y-families efficiently and accurately incorporate nucleotides opposite oxoG. In this review, we address the mutagenic potential of oxoG in cells and discuss the structural basis for oxoG bypass by different DNA polymerases and the mechanisms of the recognition of oxoG by DNA glycosylases and dNTP hydrolases.
Collapse
|
8
|
Jemth AS, Scaletti E, Carter M, Helleday T, Stenmark P. Crystal Structure and Substrate Specificity of the 8-oxo-dGTP Hydrolase NUDT1 from Arabidopsis thaliana. Biochemistry 2019; 58:887-899. [PMID: 30614695 DOI: 10.1021/acs.biochem.8b00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arabidopsis thaliana NUDT1 (AtNUDT1) belongs to the Nudix family of proteins, which have a diverse range of substrates, including oxidized nucleotides such as 8-oxo-dGTP. The hydrolysis of oxidized dNTPs is highly important as it prevents their incorporation into DNA, thus preventing mutations and DNA damage. AtNUDT1 is the sole Nudix enzyme from A. thaliana shown to have activity against 8-oxo-dGTP. We present the structure of AtNUDT1 in complex with 8-oxo-dGTP. Structural comparison with bacterial and human homologues reveals a conserved overall fold. Analysis of the 8-oxo-dGTP binding mode shows that the residues Asn76 and Ser89 interact with the O8 atom of the substrate, a feature not observed in structures of protein homologues solved to date. Kinetic analysis of wild-type and mutant AtNUDT1 confirmed that these active site residues influence 8-oxo-dGTP hydrolysis. A recent study showed that AtNUDT1 is also able to hydrolyze terpene compounds. The diversity of reactions catalyzed by AtNUDT1 suggests that this Nudix enzyme from higher plants has evolved in a manner distinct to those from other organisms.
Collapse
Affiliation(s)
- Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm S-171 21 , Sweden
| | - Emma Scaletti
- Department of Biochemistry and Biophysics , Stockholm University , Stockholm S-106 91 , Sweden
| | - Megan Carter
- Department of Biochemistry and Biophysics , Stockholm University , Stockholm S-106 91 , Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm S-171 21 , Sweden.,Sheffield Cancer Centre, Department of Oncology and Metabolism , University of Sheffield , Sheffield S10 2RX , United Kingdom
| | - Pål Stenmark
- Department of Biochemistry and Biophysics , Stockholm University , Stockholm S-106 91 , Sweden.,Department of Experimental Medical Science , Lund University , Lund 221 00 , Sweden
| |
Collapse
|
9
|
Niu RJ, Zheng QC, Zhang HX. The influence of residue in the position of 116 on the inhibitory potency of TH588 for MTH1. J Mol Graph Model 2018; 85:75-83. [PMID: 30103119 DOI: 10.1016/j.jmgm.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
As one of the first-in-class inhibitor, TH588 was found to be efficient in the suppression of MutT homolog1 (MTH1). A recent work shows that the inhibitory potency of TH588 against human MTH1 (hsMTH1) is approximately 20-fold over that of mouse MTH1 (mmMTH1) and identifies residue in position 116 in MTH1 has an important contribution to TH588 affinity. But the effect of residue Leu or Met in position 116 on the binding affinity remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of residue 116 to the different inhibitory potency of TH588 against MTH1. The binding free energy of TH588 in M116 complexes predicated by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) is much lower than that in L116 complexes, which is consistent with the experiment results. The analysis of the individual energy terms suggests that the non-polar interactions are important for distinguishing the binding of TH588. The MD results show that the Leu116 disrupts the interactions between Asn33 and TH588, thus induces the conformational changes of Asn33 as well as TH588. The altered interactions between TH588 and mmMTH1 change the flexibility of TH588, which could induce the remarkable conformational fluctuation of mmMTH1. The conformations of the two loops covering the binding pocket have obvious influence on the opening or closure of the active site. The more open binding site may explain the lower inhibitor potency of TH588 against mmMTH1 than hsMTH1. Our results provide mechanistic insight into the effect of different residue Leu or Met in position 116 on the binding affinity of TH588 for MTH1, which is expected to contribute to the further rational design of more potent inhibitors.
Collapse
Affiliation(s)
- Rui-Juan Niu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130023, PR China.
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, PR China.
| |
Collapse
|