1
|
Morimoto M, Hirao H, Kondo M, Dewa T, Kimura Y, Wang-Otomo ZY, Asakawa H, Saga Y. Atomic force microscopic analysis of the light-harvesting complex 2 from purple photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01010-4. [PMID: 36930432 DOI: 10.1007/s11120-023-01010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Structural information on the circular arrangements of repeating pigment-polypeptide subunits in antenna proteins of purple photosynthetic bacteria is a clue to a better understanding of molecular mechanisms for the ring-structure formation and efficient light harvesting of such antennas. Here, we have analyzed the ring structure of light-harvesting complex 2 (LH2) from the thermophilic purple bacterium Thermochromatium tepidum (tepidum-LH2) by atomic force microscopy. The circular arrangement of the tepidum-LH2 subunits was successfully visualized in a lipid bilayer. The average top-to-top distance of the ring structure, which is correlated with the ring size, was 4.8 ± 0.3 nm. This value was close to the top-to-top distance of the octameric LH2 from Phaeospirillum molischianum (molischianum-LH2) by the previous analysis. Gaussian distribution of the angles of the segments consisting of neighboring subunits in the ring structures of tepidum-LH2 yielded a median of 44°, which corresponds to the angle for the octameric circular arrangement (45°). These results indicate that tepidum-LH2 has a ring structure consisting of eight repeating subunits. The coincidence of an octameric ring structure of tepidum-LH2 with that of molischianum-LH2 is consistent with the homology of amino acid sequences of the polypeptides between tepidum-LH2 and molischianum-LH2.
Collapse
Affiliation(s)
- Masayuki Morimoto
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruna Hirao
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Masaharu Kondo
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takehisa Dewa
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Yukihiro Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | | | - Hitoshi Asakawa
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa, 920-1192, Japan.
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Yoshitaka Saga
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
In situ formation of photoactive B-ring reduced chlorophyll isomer in photosynthetic protein LH2. Sci Rep 2020; 10:19383. [PMID: 33168889 PMCID: PMC7652862 DOI: 10.1038/s41598-020-76540-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Natural chlorophylls have a D-ring reduced chlorin π-system; however, no naturally occurring photosynthetically active B-ring reduced chlorins have been reported. Here we report a B-ring reduced chlorin, 17,18-didehydro-bacteriochlorophyll (BChl) a, produced by in situ oxidation of B800 bacteriochlorophyll (BChl) a in a light-harvesting protein LH2 from a purple photosynthetic bacterium Phaeospirillum molischianum. The regioselective oxidation of the B-ring of B800 BChl a is rationalized by its molecular orientation in the protein matrix. The formation of 17,18-didehydro-BChl a produced no change in the local structures and circular arrangement of the LH2 protein. The B-ring reduced 17,18-didehydro-BChl a functions as an energy donor in the LH2 protein. The photoactive B-ring reduced Chl isomer in LH2 will be helpful for understanding the photofunction and evolution of photosynthetic cyclic tetrapyrrole pigments.
Collapse
|
3
|
Effects of palladium ions on light-harvesting complex 2 lacking B800 bacteriochlorophyll a. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Saga Y, Yamashita M, Imanishi M, Kimura Y, Masaoka Y, Hidaka T, Nagasawa Y. Reconstitution of 3-Acetyl Chlorophyll a into Light-Harvesting Complex 2 from the Purple Photosynthetic Bacterium Phaeospirillum molischianum. ACS OMEGA 2020; 5:6817-6825. [PMID: 32258917 PMCID: PMC7114761 DOI: 10.1021/acsomega.0c00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
The manipulation of B800 bacteriochlorophyll (BChl) a in light-harvesting complex 2 (LH2) from the purple photosynthetic bacterium Phaeospirillum molischianum (molischianum-LH2) provides insight for understanding the energy transfer mechanism and the binding of cyclic tetrapyrroles in LH2 proteins since molischianum-LH2 is one of the two LH2 proteins whose atomic-resolution structures have been determined and is a representative of type-2 LH2 proteins. However, there is no report on the substitution of B800 BChl a in molischianum-LH2. We report the reconstitution of 3-acetyl chlorophyll (AcChl) a, which has a 17,18-dihydroporphyrin skeleton, to the B800 site in molischianum-LH2. The 3-acetyl group in AcChl a formed a hydrogen bond with β'-Thr23 in essentially the same manner as native B800 BChl a, but this hydrogen bond was weaker than that of B800 BChl a. This change can be rationalized by invoking a small distortion in the orientation of the 3-acetyl group in the B800 cavity by dehydrogenation in the B-ring from BChl a. The energy transfer from AcChl a in the B800 site to B850 BChl a was about 5-fold slower than that from native B800 BChl a by a decrease of the spectral overlap between energy-donating AcChl a and energy-accepting B850 BChl a.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Madoka Yamashita
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Michie Imanishi
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuto Masaoka
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Tsubasa Hidaka
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yutaka Nagasawa
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
5
|
Yoneda Y, Kato D, Kondo M, Nagashima KVP, Miyasaka H, Nagasawa Y, Dewa T. Sequential energy transfer driven by monoexponential dynamics in a biohybrid light-harvesting complex 2 (LH2). PHOTOSYNTHESIS RESEARCH 2020; 143:115-128. [PMID: 31620983 DOI: 10.1007/s11120-019-00677-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Enhancing the light-harvesting potential of antenna components in a system of solar energy conversion is an important topic in the field of artificial photosynthesis. We constructed a biohybrid light-harvesting complex 2 (LH2) engineered from Rhodobacter sphaeroides IL106 strain. An artificial fluorophore Alexa Fluor 647 maleimide (A647) was attached to the LH2 bearing cysteine residue at the N-terminal region (LH2-NC) near B800 bacteriochlorophyll a (BChl) assembly. The A647-attached LH2-NC conjugate (LH2-NC-A647) preserved the integrity of the intrinsic chromophores, B800- and B850-BChls, and carotenoids. Femtosecond transient absorption spectroscopy revealed that the sequential energy transfer A647 → B800 → B850 occurs at time scale of 9-10 ps with monoexponential dynamics in micellar and lipid bilayer systems. A B800-removed conjugate (LH2-NC[B800(-)]-A647) exhibited a significant decrease in energy transfer efficiency in the micellar system; however, surprisingly, direct energy transfer from A647 to B850 was observed at a rate comparable to that for LH2-NC-A647. This result implies that the energy transfer pathway is modified after B800 removal. The results obtained suggested that a LH2 complex is a potential platform for construction of biohybrid light-harvesting materials with simple energy transfer dynamics through the site-selective attachment of the external antennae and the modifiable energy-funnelling pathway.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Daiji Kato
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Masaharu Kondo
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Kenji V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, 259-1293, Japan
| | - Hiroshi Miyasaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Yutaka Nagasawa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
| |
Collapse
|
6
|
Agostini A, Meneghin E, Gewehr L, Pedron D, Palm DM, Carbonera D, Paulsen H, Jaenicke E, Collini E. How water-mediated hydrogen bonds affect chlorophyll a/b selectivity in Water-Soluble Chlorophyll Protein. Sci Rep 2019; 9:18255. [PMID: 31796824 PMCID: PMC6890793 DOI: 10.1038/s41598-019-54520-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/14/2019] [Indexed: 01/15/2023] Open
Abstract
The Water-Soluble Chlorophyll Protein (WSCP) of Brassicaceae is a remarkably stable tetrapyrrole-binding protein that, by virtue of its simple design, is an exceptional model to investigate the interactions taking place between pigments and their protein scaffold and how they affect the photophysical properties and the functionality of the complexes. We investigated variants of WSCP from Lepidium virginicum (Lv) and Brassica oleracea (Bo), reconstituted with Chlorophyll (Chl) b, to determine the mechanisms by which the different Chl binding sites control their Chl a/b specificities. A combined Raman and crystallographic investigation has been employed, aimed to characterize in detail the hydrogen-bond network involving the formyl group of Chl b. The study revealed a variable degree of conformational freedom of the hydrogen bond networks among the WSCP variants, and an unexpected mixed presence of hydrogen-bonded and not hydrogen-bonded Chls b in the case of the L91P mutant of Lv WSCP. These findings helped to refine the description of the mechanisms underlying the different Chl a/b specificities of WSCP versions, highlighting the importance of the structural rigidity of the Chl binding site in the vicinity of the Chl b formyl group in granting a strong selectivity to binding sites.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy. .,Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.
| | - Elena Meneghin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lucas Gewehr
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Danilo Pedron
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Daniel M Palm
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Elmar Jaenicke
- Institute of Molecular Physiology, Johannes Gutenberg-University, Jakob-Welder-Weg 26, 55128, Mainz, Germany
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
7
|
Saga Y, Yamashita M, Nakagawa S. In situ Conversion of Chlorophyll b Reconstituted into Photosynthetic Protein LH2. CHEM LETT 2019. [DOI: 10.1246/cl.190545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Madoka Yamashita
- Department of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shiori Nakagawa
- Department of Chemistry, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|