1
|
Killian MM, Brophy MB, Nolan EM, Brunold TC. Spectroscopic and computational investigations of Cobalt(II) binding to the innate immune protein human calprotectin. J Biol Inorg Chem 2024; 29:127-137. [PMID: 38233645 DOI: 10.1007/s00775-023-02034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/30/2023] [Indexed: 01/19/2024]
Abstract
Human calprotectin (CP) is an innate immune protein that participates in the metal-withholding response to infection by sequestering essential metal nutrients from invading microbial pathogens. CP is comprised of S100A8 (α subunit, 10.8 kDa) and S100A9 (β subunit, 13.2 kDa). Two transition-metal binding sites of CP form at the S100A8/S100A9 dimer interface. Site 1 is a His3Asp motif comprised of His83 and His87 from the S100A8 subunit and His20 and Asp30 from the S100A9 subunit. Site 2 is an unusual hexahistidine motif composed of S100A8 residues His17 and His27 and S100A9 residues His91, His95, His103, and His105. In the present study, the His3Asp and His6 sites of CP were further characterized by utilizing Co2+ as a spectroscopic probe. Magnetic circular dichroism spectroscopy was employed in conjunction with electron paramagnetic resonance spectroscopy and density functional theory computations to characterize the Co2+-bound S100A8(C42S)/S100A9(C3S) CP-Ser variant and six site variants that allowed the His3Asp and His6 sites to be further probed. Our results provide new insight into the metal-binding sites of CP-Ser and the effect of amino acid substitutions on the structure of site 2.
Collapse
Affiliation(s)
- Michelle M Killian
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Megan B Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
2
|
Polakowska M, Steczkiewicz K, Szczepanowski RH, Wysłouch-Cieszyńska A. Toward an understanding of the conformational plasticity of S100A8 and S100A9 Ca 2+-binding proteins. J Biol Chem 2023; 299:102952. [PMID: 36731796 PMCID: PMC10124908 DOI: 10.1016/j.jbc.2023.102952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
S100A8 and S100A9 are small, human, Ca2+-binding proteins with multiple intracellular and extracellular functions in signaling, regulation, and defense. The two proteins are not detected as monomers but form various noncovalent homo- or hetero-oligomers related to specific activities in human physiology. Because of their significant roles in numerous medical conditions, there has been intense research on the conformational properties of various S100A8 and S100A9 proteoforms as essential targets of drug discovery. NMR or crystal structures are currently available only for mutated or truncated protein complexes, mainly with bound metal ions, that may well reflect the proteins' properties outside cells but not in other biological contexts in which they perform. Here, we used structural mass spectrometry methods combined with molecular dynamics simulations to compare the conformations of wild-type full-length S100A8 and S100A9 subunits in biologically relevant homo- and hetero-dimers and in higher oligomers formed in the presence of calcium or zinc ions. We provide, first, rationales for their functional response to changing environmental conditions, by elucidating differences between proteoforms in flexible protein regions that may provide the plasticity of the binding sites for the multiple targets, and second, the key factors contributing to the variable stability of the oligomers. The described methods and a systematic view of the conformational properties of S100A8 and S100A9 complexes provide a basis for further research to characterize and modulate their functions for basic science and therapies.
Collapse
Affiliation(s)
- Magdalena Polakowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Księcia Trojdena Street, 02-109 Warsaw, Poland
| | | |
Collapse
|
3
|
Martinez-Bond EA, Soriano BM, Williams AH. The mechanistic landscape of Lytic transglycosylase as targets for antibacterial therapy. Curr Opin Struct Biol 2022; 77:102480. [PMID: 36323133 DOI: 10.1016/j.sbi.2022.102480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Lytic transglycosylases (Ltgs) are glycan strand cleaving enzymes whose role is poorly understood in the genesis of the bacterial envelope. They play multiple roles in all stages of a bacterial life cycle, by creating holes in the peptidoglycan that is necessary for cell division and separation. Here, we review recent advances in understanding the suitability of Ltgs as antibacterial drug targets. We specifically highlight a known inhibitor bulgecin A that is able to inhibit the function of structurally diverse Ltgs, as well as synergize with beta-lactams to improve its efficacy in antibiotic insensitive strains. Discovery of new antibiotics or new targets has been challenging. These studies could provide a viable path toward designing broad-spectrum inhibitors that targets Ltgs.
Collapse
Affiliation(s)
- Elizabeth A Martinez-Bond
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA. https://twitter.com/bondlizbond
| | - Berliza M Soriano
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA. https://twitter.com/AWilliamslab
| | - Allison H Williams
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Rosen T, Nolan EM. S100A12 promotes Mn(II) binding to pneumococcal PsaA and staphylococcal MntC by Zn(II) sequestration. J Inorg Biochem 2022; 233:111862. [PMID: 35660119 PMCID: PMC9254665 DOI: 10.1016/j.jinorgbio.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Human S100A12 (calgranulin C, EN-RAGE) is a Zn(II)-sequestering host-defense protein that contributes to the metal-withholding innate immune response against microbial pathogens. S100A12 coordinates Zn(II) ions at two His3Asp sites with high affinity. A similar His3Asp site found in calprotectin (S100A8/S100A9, calgranulin A/B), a closely related human S100 protein, can sequester divalent metal ions from the solute-binding proteins (SBPs) pneumococcal PsaA (pneumococcal surface protein A) and staphylococcal MntC (manganese transport protein C). Both SBPs are components of Mn(II) transporters and capture extracellular Mn(II) ions for subsequent delivery into the bacterial cytosol. Nevertheless, PsaA and MntC exhibit a thermodynamic preference for Zn(II) over Mn(II), and Zn(II) binding can interfere with Mn(II) acquisition. In this work, we have used a biotinylated variant of S100A12 to show that S100A12 can sequester Zn(II) ions from PsaA and MntC. Moreover, electron paramagnetic resonance (EPR) spectroscopy indicates that by sequestering Zn(II) from Zn(II)-bound PsaA and MntC, S100A12 promotes Mn(II) binding to the SBPs. These results inform the function of S100A12 in Zn(II) sequestration, and further suggest that Zn(II)-sequestering S100 proteins may inadvertently protect bacterial pathogens during infection.
Collapse
|
5
|
Rosen T, Hadley RC, Bozzi AT, Ocampo D, Shearer J, Nolan EM. Zinc sequestration by human calprotectin facilitates manganese binding to the bacterial solute-binding proteins PsaA and MntC. Metallomics 2022; 14:6516941. [PMID: 35090019 PMCID: PMC8908208 DOI: 10.1093/mtomcs/mfac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 01/30/2023]
Abstract
Zinc is an essential transition metal nutrient for bacterial survival and growth but may become toxic when present at elevated levels. The Gram-positive bacterial pathogen Streptococcus pneumoniae is sensitive to zinc poisoning, which results in growth inhibition and lower resistance to oxidative stress. Streptococcus pneumoniae has a relatively high manganese requirement, and zinc toxicity in this pathogen has been attributed to the coordination of Zn(II) at the Mn(II) site of the solute-binding protein (SBP) PsaA, which prevents Mn(II) uptake by the PsaABC transport system. In this work, we investigate the Zn(II)-binding properties of pneumococcal PsaA and staphylococcal MntC, a related SBP expressed by another Gram-positive bacterial pathogen, Staphylococcus aureus, which contributes to Mn(II) uptake. X-ray absorption spectroscopic studies demonstrate that both SBPs harbor Zn(II) sites best described as five-coordinate, and metal-binding studies in solution show that both SBPs bind Zn(II) reversibly with sub-nanomolar affinities. Moreover, both SBPs exhibit a strong thermodynamic preference for Zn(II) ions, which readily displace bound Mn(II) ions from these proteins. We also evaluate the Zn(II) competition between these SBPs and the human S100 protein calprotectin (CP, S100A8/S100A9 oligomer), an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP can sequester Zn(II) from PsaA and MntC, which facilitates Mn(II) binding to the SBPs. These results demonstrate that CP can inhibit Zn(II) poisoning of the SBPs and provide molecular insight into how S100 proteins may inadvertently benefit bacterial pathogens rather than the host.
Collapse
Affiliation(s)
- Tomer Rosen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Rose C Hadley
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Aaron T Bozzi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | - Elizabeth M Nolan
- Correspondence: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA. Tel: +1-617-452-2495; E-mail:
| |
Collapse
|
6
|
Metal sequestration by S100 proteins in chemically diverse environments. Trends Microbiol 2022; 30:654-664. [DOI: 10.1016/j.tim.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
|
7
|
Silvers R, Stephan JR, Griffin RG, Nolan EM. Molecular Basis of Ca(II)-Induced Tetramerization and Transition-Metal Sequestration in Human Calprotectin. J Am Chem Soc 2021; 143:18073-18090. [PMID: 34699194 PMCID: PMC8643164 DOI: 10.1021/jacs.1c06402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer, MRP8/MRP14 oligomer) is an abundant innate immune protein that contributes to the host metal-withholding response. Its ability to sequester transition metal nutrients from microbial pathogens depends on a complex interplay of Ca(II) binding and self-association, which converts the αβ heterodimeric apo protein into a Ca(II)-bound (αβ)2 heterotetramer that displays enhanced transition metal affinities, antimicrobial activity, and protease stability. A paucity of structural data on the αβ heterodimer has hampered molecular understanding of how Ca(II) binding enables CP to exert its metal-sequestering innate immune function. We report solution NMR data that reveal how Ca(II) binding affects the structure and dynamics of the CP αβ heterodimer. These studies provide a structural model in which the apo αβ heterodimer undergoes conformational exchange and switches between two states, a tetramerization-incompetent or "inactive" state and a tetramerization-competent or "active" state. Ca(II) binding to the EF-hands of the αβ heterodimer causes the active state to predominate, resulting in self-association and formation of the (αβ)2 heterotetramer. Moreover, Ca(II) binding causes local and allosteric ordering of the His3Asp and His6 metal-binding sites. Ca(II) binding to the noncanonical EF-hand of S100A9 positions (A9)D30 and organizes the His3Asp site. Remarkably, Ca(II) binding causes allosteric effects in the C-terminal region of helix αIV of S100A9, which stabilize the α-helicity at positions H91 and H95 and thereby organize the functionally versatile His6 site. Collectively, this study illuminates the molecular basis for how CP responds to high extracellular Ca(II) concentrations, which enables its metal-sequestering host-defense function.
Collapse
Affiliation(s)
- Robert Silvers
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Jules R. Stephan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Mitra S, Werling K, Berquist EJ, Lambrecht DS, Garrett-Roe S. CH Mode Mixing Determines the Band Shape of the Carboxylate Symmetric Stretch in Apo-EDTA, Ca 2+-EDTA, and Mg 2+-EDTA. J Phys Chem A 2021; 125:4867-4881. [PMID: 34042451 DOI: 10.1021/acs.jpca.1c03061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The infrared spectra of EDTA complexed with Ca2+ and Mg2+ contain, to date, unidentified vibrational bands. This study assigns the peaks in the linear and two-dimensional infrared spectra of EDTA, with and without either Ca2+ or Mg2+ ions. Two-dimensional infrared spectroscopy and DFT calculations reveal that, in both the presence and absence of ions, the carboxylate symmetric stretch and the terminal CH bending vibrations mix. We introduce a method to calculate participation coefficients that quantify the contribution of the carboxylate symmetric stretch, CH wag, CH twist, and CH scissor in the 1400-1550 cm-1 region. With the help of participation coefficients, we assign the 1400-1430 cm-1 region to the carboxylate symmetric stretch, which can mix with CH modes. We assign the 1000-1380 cm-1 region to CH twist modes, the 1380-1430 cm-1 region to wag modes, and the 1420-1650 cm-1 region to scissor modes. The difference in binding geometry between the carboxylate-Ca2+ and carboxylate-Mg2+ complex manifests as new diagonal and cross-peaks between the mixed modes in the two complexes. The small Mg2+ ion binds EDTA tighter than the Ca2+ ion, which causes a redshift of the COO symmetric stretches of the sagittal carboxylates. Energy decomposition analysis further characterizes the importance of electrostatics and deformation energy in the bound complexes.
Collapse
Affiliation(s)
- Sunayana Mitra
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Keith Werling
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Eric J Berquist
- Q-Chem Incorporated, 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| | - Daniel S Lambrecht
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
9
|
Divalent cations influence the dimerization mode of murine S100A9 protein by modulating its disulfide bond pattern. J Struct Biol 2020; 213:107689. [PMID: 33359632 DOI: 10.1016/j.jsb.2020.107689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
S100A9, with its congener S100A8, belongs to the S100 family of calcium-binding proteins found exclusively in vertebrates. These two proteins are major constituents of neutrophils. In response to a pathological condition, they can be released extracellularly and become alarmins that induce both pro- and anti-inflammatory signals, through specific cell surface receptors. They also act as antimicrobial agents, mainly as a S100A8/A9 heterocomplex, through metal sequestration. The mechanisms whereby divalent cations modulate the extracellular functions of S100A8 and S100A9 are still unclear. Importantly, it has been proposed that these ions may affect both the ternary and quaternary structure of these proteins, thereby influencing their physiological properties. In the present study, we report the crystal structures of WT and C80A murine S100A9 (mS100A9), determined at 1.45 and 2.35 Å resolution, respectively, in the presence of calcium and zinc. These structures reveal a canonical homodimeric form for the protein. They also unravel an intramolecular disulfide bridge that stabilizes the C-terminal tail in a rigid conformation, thus shaping a second Zn-binding site per S100A9 protomer. In solution, mS100A9 apparently binds only two zinc ions per homodimer, with an affinity in the micromolar range, and aggregates in the presence of excess zinc. Using mass spectrometry, we demonstrate that mS100A9 can form both non-covalent and covalent homodimers with distinct disulfide bond patterns. Interestingly, calcium and zinc seem to affect differentially the relative proportion of these forms. We discuss how the metal-dependent interconversion between mS100A9 homodimers may explain the versatility of physiological functions attributed to the protein.
Collapse
|
10
|
Deshmukh SS, Kálmán L. Tuning the redox potential of the primary electron donor in bacterial reaction centers by manganese binding and light-induced structural changes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148285. [PMID: 32777306 DOI: 10.1016/j.bbabio.2020.148285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The influence of transition metal binding on the charge storage ability of native bacterial reaction centers (BRCs) was investigated. Binding of manganous ions uniquely prevented the light-induced conformational changes that would yield to long lifetimes of the charge separated state and the drop of the redox potential of the primary electron donor (P). The lifetimes of the stable charge pair in the terminal conformations were shortened by 50-fold and 7-fold upon manganous and cupric ion binding, respectively. Nickel and zinc binding had only marginal effects. Binding of manganese not only prevented the drop of the potential of P/P+ but also elevated it by up to 117 mV depending on where the metal was binding. With variable conditions, facilitating either manganese binding or light-induced structural changes a controlled tuning of the potential of P/P+ in multiple steps was demonstrated in a range of ~200 mV without the need of a mutation or synthesis. Under the selected conditions, manganese binding was achieved without its photochemical oxidation thus, the energized but still native BRCs can be utilized in photochemistry that is not reachable with regular BRCs. A 42 Å long hydrophobic tunnel was identified that became obstructed upon manganese binding and its likely role is to deliver protons from the hydrophobic core to the surface during conformational changes.
Collapse
Affiliation(s)
| | - László Kálmán
- Department of Physics, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Adhikari J, Stephan JR, Rempel DL, Nolan EM, Gross ML. Calcium Binding to the Innate Immune Protein Human Calprotectin Revealed by Integrated Mass Spectrometry. J Am Chem Soc 2020; 142:13372-13383. [PMID: 32589841 DOI: 10.1021/jacs.9b11950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although knowledge of the coordination chemistry and metal-withholding function of the innate immune protein human calprotectin (hCP) has broadened in recent years, understanding of its Ca2+-binding properties in solution remains incomplete. In particular, the molecular basis by which Ca2+ binding affects structure and enhances the functional properties of this remarkable transition-metal-sequestering protein has remained enigmatic. To achieve a molecular picture of how Ca2+ binding triggers hCP oligomerization, increases protease stability, and enhances antimicrobial activity, we implemented a new integrated mass spectrometry (MS)-based approach that can be readily generalized to study other protein-metal and protein-ligand interactions. Three MS-based methods (hydrogen/deuterium exchange MS kinetics; protein-ligand interactions in solution by MS, titration, and H/D exchange (PLIMSTEX); and native MS) provided a comprehensive analysis of Ca2+ binding and oligomerization to hCP without modifying the protein in any way. Integration of these methods allowed us to (i) observe the four regions of hCP that serve as Ca2+-binding sites, (ii) determine the binding stoichiometry to be four Ca2+ per CP heterodimer and eight Ca2+ per CP heterotetramer, (iii) establish the protein-to-Ca2+ molar ratio that causes the dimer-to-tetramer transition, and (iv) calculate the binding affinities associated with the four Ca2+-binding sites per heterodimer. These quantitative results support a model in which hCP exists in its heterodimeric form and is at most half-bound to Ca2+ in the cytoplasm of resting cells. With release into the extracellular space, hCP encounters elevated Ca2+ concentrations and binds more Ca2+ ions, forming a heterotetramer that is poised to compete with microbial pathogens for essential metal nutrients.
Collapse
Affiliation(s)
- Jagat Adhikari
- Department of Chemistry, Washington University at St. Louis, St. Louis, Missouri 63130, United States
| | - Jules R Stephan
- Department of Chemistry, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States
| | - Don L Rempel
- Department of Chemistry, Washington University at St. Louis, St. Louis, Missouri 63130, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States
| | - Michael L Gross
- Department of Chemistry, Washington University at St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Rosen T, Nolan EM. Metal Sequestration and Antimicrobial Activity of Human Calprotectin Are pH-Dependent. Biochemistry 2020; 59:2468-2478. [PMID: 32491853 DOI: 10.1021/acs.biochem.0c00359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer) is an abundant innate immune protein that sequesters transition metal ions in the extracellular space to limit nutrient availability and the growth of invading microbial pathogens. Our current understanding of the metal-sequestering ability of CP is based on biochemical and functional studies performed at neutral or near-neutral pH. Nevertheless, CP can be present throughout the human body and is expressed at infection and inflammation sites that tend to be acidic. Here, we evaluate the metal binding and antimicrobial properties of CP in the pH range of 5.0-7.0. We show that Ca(II)-induced tetramerization, an important process for the extracellular functions of CP, is perturbed by acidic conditions. Moreover, a low pH impairs the antimicrobial activity of CP against some bacterial pathogens, including Staphylococcus aureus and Salmonella enterica serovar Typhimurium. At a mildly acidic pH, CP loses the ability to deplete Mn from microbial growth medium, indicating that Mn(II) sequestration is attenuated under acidic conditions. Evaluation of the Mn(II) binding properties of CP at pH 5.0-7.0 indicates that mildly acidic conditions decrease the Mn(II) binding affinity of the His6 site. Lastly, CP is less effective at preventing capture of Mn(II) by the bacterial solute-binding proteins MntC and PsaA at low pH. These results indicate that acidic conditions compromise the ability of CP to sequester Mn(II) and starve microbial pathogens of this nutrient. This work highlights the importance of considering the local pH of biological sites when describing the interplay between CP and microbes in host-pathogen interactions.
Collapse
Affiliation(s)
- Tomer Rosen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Bozzi AT, Nolan EM. Avian MRP126 Restricts Microbial Growth through Ca(II)-Dependent Zn(II) Sequestration. Biochemistry 2020; 59:802-817. [PMID: 31886651 DOI: 10.1021/acs.biochem.9b01012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The calgranulins form a class of S100 proteins in higher vertebrates that innate-immune cells release in abundance at infection sites. These proteins function by binding transition metal ions to prevent microbial pathogens from obtaining those essential nutrients. Mammals express three distinct members of this family: S100A8 (calgranulin A), S100A9 (calgranulin B, which heterooligomerizes with S100A8 to form calprotectin), and S100A12 (calgranulin C), that exhibit Ca(II)-dependent transition metal binding properties. Human calprotectin effectively sequesters Mn(II), Fe(II), Ni(II), and Zn(II), whereas human S100A12 selectively sequesters Zn(II) over these other metal ions. Birds and reptiles express a single calgranulin homologue named MRP126, which we reasoned could have properties more similar to those of either calprotectin or S100A12. Here we present the purification and biophysical characterization of recombinant chicken MRP126 and, to the best of our knowledge, provide the first assessment of the metal binding and antimicrobial properties of an avian MRP126. We show that MRP126 is a homodimer that selectively sequesters Zn(II) and restricts the growth of certain microbes. MRP126 binds Zn(II) at two canonical His3Asp sites. The presence of excess Ca(II) increases the affinity of the His3Asp sites from the low-nanomolar to the low-picomolar range, thereby enhancing antimicrobial activity. Chicken MRP126 also binds additional Zn(II) equivalents with low-nanomolar affinity at two nonconserved dicysteine sites and with high-nanomolar affinity using a histidine-rich C-terminal tail that is a hallmark of this clade of calgranulins. Our results with chicken MRP126 suggest that Ca(II)-dependent Zn(II) sequestration was a role of the last common ancestor of calgranulin proteins, with mammalian calprotectin subsequently evolving a broader metal binding repertoire.
Collapse
Affiliation(s)
- Aaron T Bozzi
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|