1
|
Conversion of mammalian cell culture media waste to microbial fermentation feed efficiently supports production of recombinant protein by Escherichia coli. PLoS One 2022; 17:e0266921. [PMID: 35507546 PMCID: PMC9067682 DOI: 10.1371/journal.pone.0266921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Deriving new value from waste streams through secondary processes is a central aim of the circular bioeconomy. In this study we investigate whether chemically defined spent media (CDSM) waste from cell culture bioprocess can be recycled and used as a feed in secondary microbial fermentation to produce new recombinant protein products. Our results show that CDSM supplemented with 2% glycerol supported a specific growth rate of E. coli cultures equivalent to that achieved using a nutritionally rich microbiological media (LB). The titre of recombinant protein produced following induction in a 4-hour expression screen was approximately equivalent in the CDSM fed cultures to that of baseline, and this was maintained in a 16-hr preparative fermentation. To understand the protein production achieved in CDSM fed culture we performed a quantitative analysis of proteome changes in the E. coli using mass spectrometry. This analysis revealed significant upregulation of protein synthesis machinery enzymes and significant downregulation of carbohydrate metabolism enzymes. We conclude that spent cell culture media, which represents 100s of millions of litres of waste generated by the bioprocessing industry annually, may be valorized as a feed resource for the production of recombinant proteins in secondary microbial fermentations. Data is available via ProteomeXchange with identifier PXD026884.
Collapse
|
2
|
McGauran G, Dorris E, Borza R, Morgan N, Shields DC, Matallanas D, Wilson AG, O'Connell DJ. Resolving the Interactome of the Human Macrophage Immunometabolism Regulator (MACIR) with Enhanced Membrane Protein Preparation and Affinity Proteomics. Proteomics 2020; 20:e2000062. [PMID: 32864787 DOI: 10.1002/pmic.202000062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/17/2020] [Indexed: 11/10/2022]
Abstract
Expression of the macrophage immunometabolism regulator gene (MACIR) is associated with severity of autoimmune disease pathology and with the regulation of macrophage biology through unknown mechanisms. The encoded 206 amino acid protein lacks homology to any characterized protein sequence and is a disordered protein according to structure prediction algorithms. To identify interactions of MACIR with proteins from all subcellular compartments, a membrane solubilization buffer is employed, that together with a high affinity EF hand based pull down method, increases the resolution of quantitative mass spectrometry analysis with significant enrichment of interactions from membrane bound nuclear and mitochondrial compartments compared to samples prepared with radioimmunoprecipitation assay buffer. A total of 63 significant interacting proteins are identified and interaction with the nuclear transport receptor TNPO1 and the trafficking proteins UNC119 homolog A and B are validated by immunoprecipitation. Mutational analysis in two candidate nuclear localization signal motifs in the MACIR amino acid sequence shows the interaction with TNPO1 is likely via a non-classical proline/tyrosine-nuclear localization signal motif (aa98-117). It is shown that employing a highly specific and high affinity pull down method that performs efficiently in this glycerol and detergent rich buffer is a powerful approach for the analysis of uncharacterized protein interactomes.
Collapse
Affiliation(s)
- Gavin McGauran
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Emma Dorris
- School of Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Razvan Borza
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Niamh Morgan
- School of Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Denis C Shields
- School of Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - David Matallanas
- School of Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.,Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Anthony G Wilson
- School of Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - David J O'Connell
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
3
|
Scheidt T, Kartanas T, Peter Q, Schneider MM, Saar KL, Müller T, Challa PK, Levin A, Devenish S, Knowles TPJ. Multidimensional protein characterisation using microfluidic post-column analysis. LAB ON A CHIP 2020; 20:2663-2673. [PMID: 32588855 DOI: 10.1039/d0lc00219d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biological function of proteins is dictated by the formation of supra-molecular complexes that act as the basic machinery of the cell. As such, measuring the properties of protein species in heterogeneous mixtures is of key importance for understanding the molecular basis of biological function. Here, we describe the combination of analytical microfluidic tools with liquid chromatography for multidimensional characterisation of biomolecules in complex mixtures in the solution phase. Following chromatographic separation, a small fraction of the flow-through is distributed to multiple microfluidic devices for analysis. The microfluidic device developed here allows the simultaneous determination of the hydrodynamic radius, electrophoretic mobility, effective molecular charge and isoelectric point of isolated protein species. We demonstrate the operation principle of this approach with a mixture of three unlabelled model proteins varying in size and charge. We further extend the analytical potential of the presented approach by analysing a mixture of interacting streptavidin with biotinylated BSA and fluorophores, which form a mixture of stable complexes with diverse biophysical properties and stoichiometries. The presented microfluidic device positioned in-line with liquid chromatography presents an advanced tool for characterising multidimensional physical properties of proteins in biological samples to further understand the assembly/disassembly mechanism of proteins and the nature of complex mixtures.
Collapse
Affiliation(s)
- Tom Scheidt
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wiseman DN, Otchere A, Patel JH, Uddin R, Pollock NL, Routledge SJ, Rothnie AJ, Slack C, Poyner DR, Bill RM, Goddard AD. Expression and purification of recombinant G protein-coupled receptors: A review. Protein Expr Purif 2020; 167:105524. [PMID: 31678667 PMCID: PMC6983937 DOI: 10.1016/j.pep.2019.105524] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques.
Collapse
Affiliation(s)
- Daniel N Wiseman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abigail Otchere
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Jaimin H Patel
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Romez Uddin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | - Sarah J Routledge
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alice J Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Cathy Slack
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
5
|
McGauran G, Linse S, O'Connell DJ. Single Step Purification of Glycogen Synthase Kinase Isoforms from Small Scale Transient Expression in HEK293 Cells with a Calcium-Dependent Fragment Complementation System. Methods Mol Biol 2020; 2095:385-396. [PMID: 31858480 DOI: 10.1007/978-1-0716-0191-4_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purification of proteins for the biophysical analysis of protein interactions occurring in human cells can benefit from methods that facilitate the capture of small amounts of natively processed protein obtained using transient mammalian expression systems. We have used a novel calcium-dependent fragment complementation-based affinity method to effectively purify full length glycogen synthase kinase 3 (GSK3) α and β isoforms to study their interaction with amyloid β peptide (Aβ42). Using these proteins, purified from 1 mg of total cell lysate, we measured an apparent KD of ≤100 pM between GSK3α/β and immobilized Aβ42 with surface plasmon resonance technology. This approach can be used to retrieve useful quantities of protein for biophysical experiments with small scale mammalian cell culture.
Collapse
Affiliation(s)
- Gavin McGauran
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - David J O'Connell
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland.
- BEACON Bioeconomy Research Centre, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|