1
|
Tao Y, Zhao Q, Liu F, Liang X, Li Q. Enzymes encapsulated in organic-inorganic hybrid nanoflower with spatial localization for sensitive and colorimetric detection of formate. J Colloid Interface Sci 2024; 672:97-106. [PMID: 38833738 DOI: 10.1016/j.jcis.2024.05.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Formate is an important environmental pollutant, and meanwhile its concentration change is associated with a variety of diseases. Thus, rapid and sensitive detection of formate is critical for the biochemical analysis of complex samples and clinical diagnosis of multiple diseases. Herein, a colorimetric biosensor was constructed based on the cascade catalysis of formate oxidase (FOx) and horseradish peroxidase (HRP). These two enzymes were co-immobilized in Cu3(PO4)2-based hybrid nanoflower with spatial localization, in which FOx and HRP were located in the shell and core of nanoflower, respectively (FOx@HRP). In this system, FOx could catalyze the oxidation of formate to generate H2O2, which was then utilized by HRP to oxidize 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid to yield blue product. Ideal linear correlation could be obtained between the absorbance at 420 nm and formate concentration. Meanwhile, FOx@HRP exhibited excellent detection performance with low limit of detection (6 μM), wide linear detection range (10-900 μM), and favorable specificity, stability and reusability. Moreover, it could be applied in the detection of formate in environmental, food and biological samples with high accuracy. Collectively, FOx@HRP provides a useful strategy for the simple and sensitive detection of formate and is potentially to be used in biochemical analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yu Tao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qixuan Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fengmei Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Wen K, Wang S, Sun Y, Wang M, Zhang Y, Zhu J, Li Q. Mechanistic insights into the conversion of flavin adenine dinucleotide (FAD) to 8-formyl FAD in formate oxidase: a combined experimental and in-silico study. BIORESOUR BIOPROCESS 2024; 11:67. [PMID: 38985371 PMCID: PMC11236828 DOI: 10.1186/s40643-024-00782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Formate oxidase (FOx), which contains 8-formyl flavin adenine dinucleotide (FAD), exhibits a distinct advantage in utilizing ambient oxygen molecules for the oxidation of formic acid compared to other glucose-methanol-choline (GMC) oxidoreductase enzymes that contain only the standard FAD cofactor. The FOx-mediated conversion of FAD to 8-formyl FAD results in an approximate 10-fold increase in formate oxidase activity. However, the mechanistic details underlying the autocatalytic formation of 8-formyl FAD are still not well understood, which impedes further utilization of FOx. In this study, we employ molecular dynamics simulation, QM/MM umbrella sampling simulation, enzyme activity assay, site-directed mutagenesis, and spectroscopic analysis to elucidate the oxidation mechanism of FAD to 8-formyl FAD. Our results reveal that a catalytic water molecule, rather than any catalytic amino acids, serves as a general base to deprotonate the C8 methyl group on FAD, thus facilitating the formation of a quinone-methide tautomer intermediate. An oxygen molecule subsequently oxidizes this intermediate, resulting in a C8 methyl hydroperoxide anion that is protonated and dissociated to form OHC-RP and OH-. During the oxidation of FAD to 8-formyl FAD, the energy barrier for the rate-limiting step is calculated to be 22.8 kcal/mol, which corresponds to the required 14-hour transformation time observed experimentally. Further, the elucidated oxidation mechanism reveals that the autocatalytic formation of 8-formyl FAD depends on the proximal arginine and serine residues, R87 and S94, respectively. Enzymatic activity assay validates that the mutation of R87 to lysine reduces the kcat value to 75% of the wild-type, while the mutation to histidine results in a complete loss of activity. Similarly, the mutant S94I also leads to the deactivation of enzyme. This dependency arises because the nucleophilic OH- group and the quinone-methide tautomer intermediate are stabilized through the noncovalent interaction provided by R87 and S94. These findings not only explain the mechanistic details of each reaction step but also clarify the functional role of R87 and S94 during the oxidative maturation of 8-formyl FAD, thereby providing crucial theoretical support for the development of novel flavoenzymes with enhanced redox properties.
Collapse
Affiliation(s)
- Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Sirui Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yixin Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Mengsong Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
- Center for Supramolecular Chemical Biology, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Wu R, Yang C, Wang L, Zhong D. Ultrafast Dynamics of Fatty Acid Photodecarboxylase in Anionic Semiquinone State. J Phys Chem Lett 2022; 13:11023-11028. [PMID: 36413431 PMCID: PMC9747331 DOI: 10.1021/acs.jpclett.2c02183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fatty acid photodecarboxylase is a newly identified blue-light driven photoenzyme that catalyzes decarboxylation of fatty acids. The catalytic reaction involves a transient anionic semiquinone of flavin cofactor (FAD•-) as an intermediate, but photochemical properties of this anionic radical are largely unknown. Here, we have anaerobically produced the wild-type FAP in the FAD•- state and conducted femtosecond-resolved fluorescence and absorption measurements. We have observed the multiphasic deactivation dynamics of excited states on multiple time scales from a few picoseconds even to a few nanoseconds through conical intersections between various electronic states. Interestingly, the nanosecond components can only be observed from higher electronic excited states. Our results show the complexity of the energy landscapes of various excited states and rule out the occurrence of electron or proton transfer with nearby residue(s) in the active site.
Collapse
Affiliation(s)
| | | | | | - Dongping Zhong
- Corresponding Author : Dongping Zhong − Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus Ohio, 43210, USA;
| |
Collapse
|
4
|
Wang L, Carta M, Malpass-Evans R, McKeown NB, Fletcher PJ, Estrela P, Roldan A, Marken F. Artificial Formate Oxidase Reactivity with Nano-Palladium Embedded in Intrinsically Microporous Polyamine (Pd@PIM-EA-TB) Driving the H2O2 – 3,5,3’,5’-Tetramethylbenzidine (TMB) Colour Reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
5
|
Unusual reactivity of a flavin in a bifurcating electron-transferring flavoprotein leads to flavin modification and a charge-transfer complex. J Biol Chem 2022; 298:102606. [PMID: 36257407 PMCID: PMC9713284 DOI: 10.1016/j.jbc.2022.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
From the outset, canonical electron transferring flavoproteins (ETFs) earned a reputation for containing modified flavin. We now show that modification occurs in the recently recognized bifurcating (Bf) ETFs as well. In Bf ETFs, the 'electron transfer' (ET) flavin mediates single electron transfer via a stable anionic semiquinone state, akin to the FAD of canonical ETFs, whereas a second flavin mediates bifurcation (the Bf FAD). We demonstrate that the ET FAD undergoes transformation to two different modified flavins by a sequence of protein-catalyzed reactions that occurs specifically in the ET site, when the enzyme is maintained at pH 9 in an amine-based buffer. Our optical and mass spectrometric characterizations identify 8-formyl flavin early in the process and 8-amino flavins (8AFs) at later times. The latter have not previously been documented in an ETF to our knowledge. Mass spectrometry of flavin products formed in Tris or bis-tris-aminopropane solutions demonstrates that the source of the amine adduct is the buffer. Stepwise reduction of the 8AF demonstrates that it can explain a charge transfer band observed near 726 nm in Bf ETF, as a complex involving the hydroquinone state of the 8AF in the ET site with the oxidized state of unmodified flavin in the Bf site. This supports the possibility that Bf ETF can populate a conformation enabling direct electron transfer between its two flavins, as has been proposed for cofactors brought together in complexes between ETF and its partner proteins.
Collapse
|
6
|
Mohamed-Raseek N, Miller AF. Contrasting roles for two conserved arginines: stabilizing flavin semiquinone or quaternary structure, in bifurcating electron transfer flavoproteins. J Biol Chem 2022; 298:101733. [PMID: 35176283 PMCID: PMC8958531 DOI: 10.1016/j.jbc.2022.101733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/02/2023] Open
Abstract
Bifurcating electron transfer flavoproteins (Bf ETFs) are important redox enzymes that contain two flavin adenine dinucleotide (FAD) cofactors, with contrasting reactivities and complementary roles in electron bifurcation. However, for both the “electron transfer” (ET) and the “bifurcating” (Bf) FADs, the only charged amino acid within 5 Å of the flavin is a conserved arginine (Arg) residue. To understand how the two sites produce different reactivities utilizing the same residue, we investigated the consequences of replacing each of the Arg residues with lysine, glutamine, histidine, or alanine. We show that absence of a positive charge in the ET site diminishes accumulation of the anionic semiquinone (ASQ) that enables the ET flavin to act as a single electron carrier, due to depression of the oxidized versus. ASQ reduction midpoint potential, E°OX/ASQ. Perturbation of the ET site also affected the remote Bf site, whereas abrogation of Bf FAD binding accelerated chemical modification of the ET flavin. In the Bf site, removal of the positive charge impaired binding of FAD or AMP, resulting in unstable protein. Based on pH dependence, we propose that the Bf site Arg interacts with the phosphate(s) of Bf FAD or AMP, bridging the domain interface via a conserved peptide loop (“zipper”) and favoring nucleotide binding. We further propose a model that rationalizes conservation of the Bf site Arg even in non-Bf ETFs, as well as AMP's stabilizing role in the latter, and provides a mechanism for coupling Bf flavin redox changes to domain-scale motion.
Collapse
|
7
|
Kar RK, Chasen S, Mroginski MA, Miller AF. Tuning the Quantum Chemical Properties of Flavins via Modification at C8. J Phys Chem B 2021; 125:12654-12669. [PMID: 34784473 DOI: 10.1021/acs.jpcb.1c07306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavins are central to countless enzymes but display different reactivities depending on their environments. This is understood to reflect modulation of the flavin electronic structure. To understand changes in orbital natures, energies, and correlation over the ring system, we begin by comparing seven flavin variants differing at C8, exploiting their different electronic spectra to validate quantum chemical calculations. Ground state calculations replicate a Hammett trend and reveal the significance of the flavin π-system. Comparison of higher-level theories establishes CC2 and ACD(2) as methods of choice for characterization of electronic transitions. Charge transfer character and electron correlation prove responsive to the identity of the substituent at C8. Indeed, bond length alternation analysis demonstrates extensive conjugation and delocalization from the C8 position throughout the ring system. Moreover, we succeed in replicating a particularly challenging UV/Vis spectrum by implementing hybrid QM/MM in explicit solvents. Our calculations reveal that the presence of nonbonding lone pairs correlates with the change in the UV/Vis spectrum observed when the 8-methyl is replaced by NH2, OH, or SH. Thus, our computations offer routes to understanding the spectra of flavins with different modifications. This is a first step toward understanding how the same is accomplished by different binding environments.
Collapse
Affiliation(s)
- Rajiv K Kar
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Sam Chasen
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Maria-Andrea Mroginski
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anne-Frances Miller
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.,Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
8
|
Duan HD, Khan SA, Miller AF. Photogeneration and reactivity of flavin anionic semiquinone in a bifurcating electron transfer flavoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148415. [PMID: 33727071 DOI: 10.1016/j.bbabio.2021.148415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Electron transfer bifurcation allows production of a strongly reducing carrier at the expense of a weaker one, by redistributing energy among a pair of electrons. Thus, two weakly-reducing electrons from NADH are consumed to produce a strongly reducing ferredoxin or flavodoxin, paid for by reduction of an oxidizing acceptor. The prevailing mechanism calls for participation of a strongly reducing flavin semiquinone which has been difficult to observe with site-certainly in multi-flavin systems. Using blue light (450 nm) to photoexcite the flavins of bifurcating electron transfer flavoprotein (ETF), we demonstrate accumulation of anionic flavin semiquinone in excess of what is observed in equilibrium titrations, and establish its ability to reduce the low-potential electron acceptor benzyl viologen. This must occur at the bifurcating flavin because the midpoint potentials of the electron transfer (ET) flavin are not sufficiently negative. We show that bis-tris propane buffer is an effective electron donor to the flavin photoreduction, but that if the system is prepared with the ET flavin chemically reduced, so that only the bifurcating flavin is oxidized and photochemically active, flavin anionic semiquinone is formed more rapidly. Thus, excited bifurcating flavin is able to draw on an electron stored at the ET flavin. Flavin semiquinone photogenerated at the bifurcation site must therefore be accompanied by additional semiquinone formation by oxidation of the ET flavin. Consistent with the expected instability of bifurcating flavin semiquinone, it subsides immediately upon cessation of illumination. However comparison with yields of semiquinone in equilibrium titrations suggest that during continuous illumination at pH 9 a steady state population of 0.3 equivalents of bifurcating flavin semiquinone accumulates, and then undergoes further photoreduction to the hydroquinone. Although transient, the population of bifurcating flavin semiquinone explains the system's ability to conduct light-driven electron transfer from bis-tris propane to benzyl viologen, in effect trapping energy from light.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Sharique A Khan
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | |
Collapse
|
9
|
Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases. Catalysts 2020. [DOI: 10.3390/catal10091072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
Collapse
|
10
|
Willot SJ, Hoang MD, Paul CE, Alcalde M, Arends IWCE, Bommarius AS, Bommarius B, Hollmann F. FOx News: Towards Methanol‐driven Biocatalytic Oxyfunctionalisation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sébastien J.‐P. Willot
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| | - Manh Dat Hoang
- Institute of Biochemical Engineering Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis Institute of Catalysis, CSIC Madrid Spain
| | | | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 950 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 950 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| |
Collapse
|
11
|
Doubayashi D, Oki M, Mikami B, Uchida H. The microenvironment surrounding FAD mediates its conversion to 8-formyl-FAD in Aspergillus oryzae RIB40 formate oxidase. J Biochem 2019; 166:67-75. [PMID: 30715389 DOI: 10.1093/jb/mvz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022] Open
Abstract
Aspergillus oryzae RIB40 formate oxidase has Arg87 and Arg554 near the formyl group and O(4) atom of 8-formyl-flavin adenine dinucleotide (FAD), respectively, with Asp396 neighbouring Arg554. Herein, we probed the roles of these three residues in modification of FAD to 8-formyl-FAD. Replacement of Arg87 or Arg554 with Lys or Ala decreased and abolished the modification, respectively. Replacement of Asp396 with Ala or Asn lowered the modification rate. The observation of unusual effects of maintaining pH 7.0 on the modification in R87K, R554K and D396 variants indicates initial and subsequent processes with different pH dependencies. Comparison of the initial process at pH 4.5 and 7.0 suggests that the microenvironment around Arg87 and the protonation state of Asp396 affect the initial process in the native enzyme. Comparison of the crystal structures of native and R554 variants showed that the replacements had minimal effect on catalytic site structure. The positively charged Arg87 might contribute to the formation of an anionic quinone-methide tautomer intermediate, while the positively charged Arg554, in collaboration with the negatively charged Asp396, might stabilize this intermediate and form a hydrogen bonding network with the N(5)/O(4) region, thereby facilitating efficient FAD modification.
Collapse
Affiliation(s)
- Daiju Doubayashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| | - Bunzo Mikami
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Ujishi, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| |
Collapse
|
12
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H 2 O 2 -Dependent Biocatalytic Oxidation Reactions. Angew Chem Int Ed Engl 2019; 58:7873-7877. [PMID: 30945422 PMCID: PMC6563469 DOI: 10.1002/anie.201902380] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/29/2022]
Abstract
An increasing number of biocatalytic oxidation reactions rely on H2 O2 as a clean oxidant. The poor robustness of most enzymes towards H2 O2 , however, necessitates more efficient systems for in situ H2 O2 generation. In analogy to the well-known formate dehydrogenase to promote NADH-dependent reactions, we here propose employing formate oxidase (FOx) to promote H2 O2 -dependent enzymatic oxidation reactions. Even under non-optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.
Collapse
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
- Chemistry DepartmentFaculty of ScienceSohag UniversitySohag82524Egypt
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC28049MadridSpain
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology901 Atlantic Drive, N.W.AtlantaGA30332USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| |
Collapse
|
13
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formiat‐Oxidase (FOx) aus
Aspergillus oryzae
: ein Katalysator für verschiedene H
2
O
2
‐abhängige biokatalytische Oxidationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
- Chemistry DepartmentFaculty of ScienceSohag University Sohag 82524 Ägypten
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC 28049 Madrid Spanien
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology 901 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| |
Collapse
|
14
|
On the use of noncompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Methods Enzymol 2019; 620:115-143. [PMID: 31072484 DOI: 10.1016/bs.mie.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This account describes the application of kinetic isotope effects (KIEs) to investigate the mechanistic properties of flavin dependent enzymes. Assays can be conducted during steady-state catalytic turnover of the flavoenzyme with its substrate or by using rapid-kinetic techniques to measure either the reductive or oxidative half-reactions of the enzyme. Great care should be taken to ensure that the observed effects are due to isotopic substitution and not other factors such as pH effects or changes in the solvent viscosity of the reaction mixture. Different types of KIEs are described along with a physical description of their origins and the unique information each can provide about the mechanism of an enzyme. Detailed experimental techniques are outlined with special emphasis on the proper controls and data analysis that must be carried out to avoid erroneous conclusions. Examples are provided for each type of KIE measurement from references in the literature. It is our hope that this article will clarify any confusion concerning the utility of KIEs in the study of flavoprotein mechanism and encourage their use by the community.
Collapse
|
15
|
|