1
|
Schlaweck S, Radcke A, Kampmann S, Becker BV, Brossart P, Heine A. The Immunomodulatory Effect of Different FLT3 Inhibitors on Dendritic Cells. Cancers (Basel) 2024; 16:3719. [PMID: 39518156 PMCID: PMC11545830 DOI: 10.3390/cancers16213719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND FMS-like tyrosine kinase 3 (FLT3) mutations or internal tandem duplication occur in 30% of acute myeloid leukemia (AML) cases. In these cases, FLT3 inhibitors (FLT3i) are approved for induction treatment and relapse. Allogeneic hematopoietic stem cell transplantation (alloHSCT) remains the recommended post-induction therapy for suitable patients. However, the role of FLT3i therapy after alloHSCT remains unclear. Therefore, we investigated the three currently available FLT3i, gilteritinib, midostaurin, and quizartinib, in terms of their immunosuppressive effect on dendritic cells (DCs). DCs are professional antigen-presenting cells inducing T-cell responses to infectious stimuli. Highly activated DCs can also cause complications after alloHSCT, such as triggering Graft versus Host disease, a serious and potentially life-threatening complication after alloHSCT. METHODS To study the immunomodulatory effects on DCs, we differentiated murine and human DCs in the presence of FLT3i and performed immunophenotyping by flow cytometry and cytokine measurements and investigated gene and protein expression. RESULTS We detected a dose-dependent immunosuppressive effect of midostaurin, which decreased the expression of costimulatory markers like CD86, and found a reduced secretion of pro-inflammatory cytokines such as IL-12, TNFα, and IL-6. Mechanistically, we show that midostaurin inhibits TLR and TNF signaling and NFκB, PI3K, and MAPK pathways. The immunosuppressive effect of gilteritinib was less pronounced, while quizartinib did not show truncation of relevant signaling pathways. CONCLUSIONS Our results suggest different immunosuppressive effects of these three FLT3i and may, therefore, provide an additional rationale for optimal maintenance therapy after alloHSCT of FLT3-positive AML patients to prevent infectious complications and GvHD mediated by DCs.
Collapse
Affiliation(s)
- Sebastian Schlaweck
- Medical Clinic III for Hematology, Oncology, Rheumatology, Immunoncology and Stem-Cell Transplantation, University of Bonn, 53127 Bonn, Germany; (S.S.); (A.R.); (S.K.); (P.B.)
- Faculty of Medicine, Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), University Hospital of Bonn, 53127 Bonn, Germany
| | - Alea Radcke
- Medical Clinic III for Hematology, Oncology, Rheumatology, Immunoncology and Stem-Cell Transplantation, University of Bonn, 53127 Bonn, Germany; (S.S.); (A.R.); (S.K.); (P.B.)
| | - Sascha Kampmann
- Medical Clinic III for Hematology, Oncology, Rheumatology, Immunoncology and Stem-Cell Transplantation, University of Bonn, 53127 Bonn, Germany; (S.S.); (A.R.); (S.K.); (P.B.)
| | - Benjamin V. Becker
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, 56072 Koblenz, Germany;
| | - Peter Brossart
- Medical Clinic III for Hematology, Oncology, Rheumatology, Immunoncology and Stem-Cell Transplantation, University of Bonn, 53127 Bonn, Germany; (S.S.); (A.R.); (S.K.); (P.B.)
| | - Annkristin Heine
- Medical Clinic III for Hematology, Oncology, Rheumatology, Immunoncology and Stem-Cell Transplantation, University of Bonn, 53127 Bonn, Germany; (S.S.); (A.R.); (S.K.); (P.B.)
| |
Collapse
|
2
|
Yu G, Zhang W, Basyal M, Nishida Y, Mizumo H, Ly C, Zhang H, Rice WG, Andreeff M. The multi-kinase inhibitor CG-806 exerts anti-cancer activity against acute myeloid leukemia by co-targeting FLT3, BTK, and aurora kinases. Leuk Lymphoma 2024; 65:1659-1674. [PMID: 38871487 DOI: 10.1080/10428194.2024.2364839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/01/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Despite the development of several Fms-like tyrosine kinase 3 (FLT3) inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemia (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways, such as those regulated by BTK, aurora kinases (AuroK), and potentially others, in addition to acquired tyrosine kinase domain (TKD) mutations of FLT3 gene. FLT3 may not always be a driver mutation. We evaluated the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, to circumvent drug resistance and target FLT3 wild-type (WT) cells. The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing the cell cycle using flow cytometry in vitro. CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile against FLT3, BTK, and AuroK. In FLT3 mutant cells, CG-806 induced G1 phase blockage, whereas in FLT3 WT cells, it resulted in G2/M phase arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously results in a synergistic pro-apoptotic effect in FLT3 mutant leukemia cells. The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemic efficacy regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291).
Collapse
Affiliation(s)
- Guopan Yu
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguo Zhang
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahesh Basyal
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuki Nishida
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hideaki Mizumo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charlie Ly
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Fontana C, de Meirelles JL, Verli H. Theoretical models of staurosporine and analogs uncover detailed structural information in biological solution. J Mol Graph Model 2024; 126:108653. [PMID: 37922640 DOI: 10.1016/j.jmgm.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Staurosporine and its analogs (STA-analogs) are indolocarbazoles (ICZs) compounds able to inhibit kinase proteins in a non-specific way, while present antimicrobial and cytostatic properties. The knowledge of molecular features associated to the complexation, including the ligand shape in solution and thermodynamics of complexation, is substantial to the development of new bioactive ICZs with improved therapeutic properties. In this context, the empirical approach of GROMOS force field is able to accurately reproduce condensed phase physicochemical properties of molecular systems after parameterization. Hence, through parameterization under GROMOS force field and molecular simulations, we assessed STA-analogs dynamics in aqueous solution, as well as its interaction with water to probe conformational and structural features involved in complexation to therapeutic targets. The coexistence of multiple conformers observed in simulations, and confirmed by metadynamics calculations, expanding the conformational space knowledge of these ligands with potential implications in understanding the ligand conformational selection during complexation. Also, changes in availability to H-bonding concerning the different substituents and water can reflect on effects at complexation free energy due to variation at the desolvation energetic costs. Based on these results, we expect the obtained structural data provide systemic framework for rational chemical modification of STA-analogs.
Collapse
Affiliation(s)
- Crisciele Fontana
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Av. Bento Gonçalves, 9500 (Caixa Postal 15005), Porto Alegre, CEP 91501-970, RS, Brazil
| | - João Luiz de Meirelles
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Av. Bento Gonçalves, 9500 (Caixa Postal 15005), Porto Alegre, CEP 91501-970, RS, Brazil
| | - Hugo Verli
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Av. Bento Gonçalves, 9500 (Caixa Postal 15005), Porto Alegre, CEP 91501-970, RS, Brazil.
| |
Collapse
|
4
|
Macaya I, Roman M, Welch C, Entrialgo-Cadierno R, Salmon M, Santos A, Feliu I, Kovalski J, Lopez I, Rodriguez-Remirez M, Palomino-Echeverria S, Lonfgren SM, Ferrero M, Calabuig S, Ludwig IA, Lara-Astiaso D, Jantus-Lewintre E, Guruceaga E, Narayanan S, Ponz-Sarvise M, Pineda-Lucena A, Lecanda F, Ruggero D, Khatri P, Santamaria E, Fernandez-Irigoyen J, Ferrer I, Paz-Ares L, Drosten M, Barbacid M, Gil-Bazo I, Vicent S. Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer. Nat Commun 2023; 14:6332. [PMID: 37816716 PMCID: PMC10564741 DOI: 10.1038/s41467-023-41828-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.
Collapse
Affiliation(s)
- Irati Macaya
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Marta Roman
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Connor Welch
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | | | - Marina Salmon
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alba Santos
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Iker Feliu
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Joanna Kovalski
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Ines Lopez
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Maria Rodriguez-Remirez
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Sara Palomino-Echeverria
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, Pamplona, Spain
| | - Shane M Lonfgren
- Stanford Institute for Immunity, Transplantation and Infection, Stanford, CA, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Macarena Ferrero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
| | - Silvia Calabuig
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Iziar A Ludwig
- University of Navarra, Center for Applied Medical Research, Molecular Therapies Program, Pamplona, Spain
| | - David Lara-Astiaso
- University of Navarra, Center for Applied Medical Research, Genomics Platform, Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Elizabeth Guruceaga
- University of Navarra, Center for Applied Medical Research, Bioinformatics Platform, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shruthi Narayanan
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Mariano Ponz-Sarvise
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Antonio Pineda-Lucena
- University of Navarra, Center for Applied Medical Research, Molecular Therapies Program, Pamplona, Spain
| | - Fernando Lecanda
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Purvesh Khatri
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaria
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquin Fernandez-Irigoyen
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Irene Ferrer
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Paz-Ares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical School, Universidad Complutense, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Gil-Bazo
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
- Department of Oncology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Silve Vicent
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain.
| |
Collapse
|
5
|
Dispenza MC, Metcalfe DD, Olivera A. Research Advances in Mast Cell Biology and Their Translation Into Novel Therapies for Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2032-2042. [PMID: 36958519 PMCID: PMC10330051 DOI: 10.1016/j.jaip.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Anaphylaxis is an acute, potentially life-threatening systemic allergic reaction for which there are no known reliable preventative therapies. Its primary cell mediator, the mast cell, has several pathophysiologic roles and functions in IgE-mediated reactions that continue to be poorly understood. Recent advances in the understanding of allergic mechanisms have identified novel targets for inhibiting mast cell function and activation. The prevention of anaphylaxis is within reach with new drugs that could modulate immune tolerance, mast cell proliferation and differentiation, and IgE regulation and production. Several US Food and Drug Administration-approved drugs for chronic urticaria, mastocytosis, and cancer are also being repurposed to prevent anaphylaxis. New therapeutics have not only shown promise in potential efficacy for preventing IgE-mediated reactions, but in some cases, they are able to inform us about mast cell mechanisms in vivo. This review summarizes the most recent advances in the treatment of anaphylaxis that have arisen from new pharmacologic tools and our current understanding of mast cell biology.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
6
|
Yu G, Zhang W, Zhang H, Ly C, Basyal M, Rice WG, Andreeff M. The multi-kinase inhibitor CG-806 exerts anti-cancer activity against acute myeloid leukemia by co-targeting FLT3, BTK, and Aurora kinases. RESEARCH SQUARE 2023:rs.3.rs-2570204. [PMID: 36865133 PMCID: PMC9980215 DOI: 10.21203/rs.3.rs-2570204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Despite the development of several FLT3 inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemias (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways such as those regulated by BTK, aurora kinases, and potentially others in addition to acquired tyrosine kinase domains (TKD) mutations of FLT3 gene. FLT3may not always be a driver mutation. Objective To evaluate the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, in order to circumvent drug resistance and target FLT3 wild-type (WT) cells. Methods The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing cell cycle with flow cytometry in vitro, and its anti-leukemia. Results CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile of FLT3, BTK, and aurora kinases. InFLT3 mutant cells, CG-806 induced G1 phase blockage, while in FLT3WT cells, it resulted in G2/M arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously resulted in a synergistic pro-apoptotic effect in FLT3mutant leukemia cells. Conclusion The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemia efficacy, regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291).
Collapse
Affiliation(s)
- Guopan Yu
- The University of Texas MD Anderson Cancer Center
| | | | | | - Charlie Ly
- The University of Texas MD Anderson Cancer Center
| | | | | | | |
Collapse
|
7
|
Proteomic and phosphoproteomic landscapes of acute myeloid leukemia. Blood 2022; 140:1533-1548. [PMID: 35895896 PMCID: PMC9523374 DOI: 10.1182/blood.2022016033] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023] Open
Abstract
We have developed a deep-scale proteome and phosphoproteome database from 44 representative acute myeloid leukemia (AML) patients from the LAML TCGA dataset and 6 healthy bone marrow-derived controls. After confirming data quality, we orthogonally validated several previously undescribed features of AML revealed by the proteomic data. We identified examples of posttranscriptionally regulated proteins both globally (ie, in all AML samples) and also in patients with recurrent AML driver mutations. For example, samples with IDH1/2 mutations displayed elevated levels of the 2-oxoglutarate-dependent histone demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these genes; we confirmed this finding in vitro. In samples with NPMc mutations, we identified several nuclear importins with posttranscriptionally increased protein abundance and showed that they interact with NPMc but not wild-type NPM1. We identified 2 cell surface proteins (CD180 and MRC1/CD206) expressed on AML blasts of many patients (but not healthy CD34+ stem/progenitor cells) that could represent novel targets for immunologic therapies and confirmed these targets via flow cytometry. Finally, we detected nearly 30 000 phosphosites in these samples; globally, AML samples were associated with the abnormal phosphorylation of specific residues in PTPN11, STAT3, AKT1, and PRKCD. FLT3-TKD samples were associated with increased phosphorylation of activating tyrosines on the cytoplasmic Src-family tyrosine kinases FGR and HCK and related signaling proteins. PML-RARA-initiated AML samples displayed a unique phosphorylation signature, and TP53-mutant samples showed abundant phosphorylation of serine-183 on TP53 itself. This publicly available database will serve as a foundation for further investigations of protein dysregulation in AML pathogenesis.
Collapse
|
8
|
Blackmon A, Aldoss I, Ball BJ. FLT3 Inhibitors as Maintenance Therapy after Allogeneic Stem-Cell Transplantation. Blood Lymphat Cancer 2022; 12:137-147. [PMID: 36097605 PMCID: PMC9464008 DOI: 10.2147/blctt.s281252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the FLT3 gene are associated with poor prognosis in patients with AML, even after consolidation with allogeneic hematopoietic cell transplantation (alloHCT) in first remission. Treatment failure in FLT3-mutated AML is largely driven by excessive risk of relapse compared to other genetic subtypes, including in patients post-alloHCT. As a result, there is substantial interest in studying posttransplant maintenance therapy in FLT3-mutated AML as an approach to optimize disease control and improve long-term outcomes. Clinical trials utilizing posttransplant FLT3 inhibitors, such as sorafenib and midostaurin, have shown feasibility, safety, and encouraging posttransplant outcomes, and there are ongoing studies using newer-generation tyrosine-kinase inhibitors as posttransplant maintenance therapy. Here, we review the toxicities and efficacy of FLT3 inhibitors as posttransplant maintenance, recommendations on the use of FLT3 inhibitors by international consensus guidelines, and highlight key remaining questions.
Collapse
Affiliation(s)
- Amanda Blackmon
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Brian J Ball
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
9
|
Díaz-Beyá M, García-Fortes M, Valls R, Artigas L, Gómez-Casares MT, Montesinos P, Sánchez-Guijo F, Coma M, Vendranes M, Martínez-López J. A Systems Biology- and Machine Learning-Based Study to Unravel Potential Therapeutic Mechanisms of Midostaurin as a Multitarget Therapy on FLT3-Mutated AML. BIOMEDINFORMATICS 2022; 2:375-397. [DOI: 10.3390/biomedinformatics2030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Acute myeloid leukemia (AML), a hematologic malignancy that results in bone marrow failure, is the most common acute leukemia in adults. The presence of FMS-related tyrosine kinase 3 (FLT3) mutations is associated with a poor prognosis, making the evaluation of FLT3-inhibitors an imperative goal in clinical trials. Midostaurin was the first FLT3-inhibitor approved by the FDA and EMA for the treatment of FLT3-mutated AML, and it showed a significant improvement in overall survival for newly diagnosed patients treated with midostaurin, in combination with standard chemotherapy (RATIFY study). The main interest of midostaurin has been the FLT3-specific inhibition, but little is known about its role as a multikinase inhibitor and whether it may be used in relapse and maintenance therapy. Here, we used systems biology- and machine learning-based approaches to deepen the potential benefits of the multitarget activity of midostaurin and to better understand its anti-leukemic effect on FLT3-mutated AML. The resulting in silico study revealed that the multikinase activity of midostaurin may play a role in the treatment’s efficacy. Additionally, we propose a series of molecular mechanisms that support a potential benefit of midostaurin as a maintenance therapy in FLT3-mutated AML, by regulating the microenvironment. The obtained results are backed up using independent gene expression data.
Collapse
Affiliation(s)
- Marina Díaz-Beyá
- Department of Hematology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - María García-Fortes
- Hematology Department, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Raquel Valls
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | - Laura Artigas
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | - Mª Teresa Gómez-Casares
- Hematology Service, Hospital Universitario Insular Materno-Infantil, 35016 Las Palmas de Gran Canaria, Spain
| | - Pau Montesinos
- Departament of Hematology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Fermín Sánchez-Guijo
- Cancer Research Center (CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mireia Coma
- Molecular Health Department, Anaxomics Biotech SL, 08007 Barcelona, Spain
| | | | - Joaquín Martínez-López
- Hospital 12 de Octubre. Universidad Complutense. CNIO. Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto Carlos III, 28041 Madrid, Spain
| |
Collapse
|
10
|
Sechaud R, Sinclair K, Grosch K, Ouatas T, Pathak D. Evaluation of drug-drug interactions between midostaurin and strong CYP3A4 inhibitors in patients with FLT-3-mutated acute myeloid leukemia (AML). Cancer Chemother Pharmacol 2022; 90:19-27. [PMID: 35751657 DOI: 10.1007/s00280-022-04448-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/04/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE Midostaurin, approved for the treatment of newly diagnosed, FLT3-mutated acute myeloid leukemia (AML), is metabolized by cytochrome P450 3A4 (CYP3A4). Midostaurin with concomitant strong CYP3A4 inhibitors use (e.g., antifungal azoles) may result in drug-drug interactions. This post hoc analysis of RATIFY phase 3 study data evaluated effects of strong CYP3A4 inhibitor use on the exposure and safety of midostaurin. METHODS Trough concentrations were used to assess midostaurin and metabolite exposure in the presence and absence of strong CYP3A4 inhibitors. Adverse event (AE) frequency was assessed in patients who received concomitant strong CYP3A4 inhibitors vs those who did not. Time to first clinically notable AE (CNAE) was also assessed in patients with high midostaurin plasma exposure vs those of matched placebo controls. RESULTS Use of concomitant strong CYP3A4 inhibitors was most frequent during the induction phase (60.8%). A 1.44-fold increase in midostaurin plasma exposure was observed in patients with concomitant strong CYP3A4 inhibitor use vs those without. Midostaurin-treated patients who received concomitant strong CYP3A4 inhibitors experienced grade 3/4 infection-related AEs more frequently vs those who did not. Patients with high levels of midostaurin exposure had a shorter median time to first grade 3/4 CNAE vs placebo controls (36 vs 41 days, respectively; P = .012). CONCLUSION Although concomitantly administered strong CYP3A4 inhibitors increased midostaurin exposure 1.44-fold, no clinically relevant differences in safety were noted. Midostaurin dose adjustment is not necessary with concomitant strong CYP3A4 inhibitors in patients with FLT3-mutated AML; however, caution is advised, and patients should be closely monitored.
Collapse
Affiliation(s)
| | | | - Kai Grosch
- Novartis Pharma AG, CH-4002, Basel, Switzerland
| | | | | |
Collapse
|
11
|
Valent P, Akin C, Hartmann K, Reiter A, Gotlib J, Sotlar K, Sperr WR, Degenfeld-Schonburg L, Smiljkovic D, Triggiani M, Horny HP, Arock M, Galli SJ, Metcalfe DD. Drug-Induced Mast Cell Eradication: A Novel Approach to Treat Mast Cell Activation Disorders? J Allergy Clin Immunol 2022; 149:1866-1874. [PMID: 35421448 DOI: 10.1016/j.jaci.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Mast cell activation is a key event in allergic reactions, other inflammatory states, and mast cell activation syndromes. Mast cell-stabilizing agents, mediator-targeting drugs and drugs interfering with mediator effects are often prescribed in these patients. However, the clinical efficacy of these drugs varies, depending on the numbers of involved mast cells and the underlying pathology. One straightforward approach would be to eradicate the primary target cell. However, to date, no mast cell-eradicating treatment approach has been developed for patients suffering from mast cell activation disorders. Nevertheless, recent data suggest that long-term treatment with agents that effectively inhibit KIT-function results in the virtual eradication of tissue mast cells and a sustained decrease in serum tryptase levels. In many of these patients, mast cell depletion is associated with a substantial improvement in mediator-induced symptoms. In patients with an underlying KIT D816V+ mastocytosis, such mast cell eradication requires an effective inhibitor of KIT D816V, such as avapritinib. However, the use of KIT inhibitors must be balanced against potential side effects. We here discuss mast cell-eradicating strategies in various disease models, the feasibility of this approach, available clinical data, and future prospects for the use of KIT-targeting drugs in mast cell activation disorders.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Germany
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
12
|
Khayat MT, Omar AM, Ahmed F, Khan MI, Ibrahim SM, Muhammad YA, Malebari AM, Neamatallah T, El-Araby ME. Insights on Cancer Cell Inhibition, Subcellular Activities, and Kinase Profile of Phenylacetamides Pending 1 H-Imidazol-5-One Variants. Front Pharmacol 2022; 12:794325. [PMID: 35069208 PMCID: PMC8766756 DOI: 10.3389/fphar.2021.794325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Structural changes of small-molecule drugs may bring interesting biological properties, especially in the field of kinase inhibitors. We sought to study tirbanibulin, a first-in-class dual Src kinase (non-ATP competitive)/tubulin inhibitor because there was not enough reporting about its structure–activity relationships (SARs). In particular, the present research is based on the replacement of the outer ring of the biphenyl system of 2-[(1,1′-biphenyl)-4-yl]-N-benzylacetamide, the identified pharmacophore of KX chemotype, with a heterocyclic ring. The newly synthesized compounds showed a range of activities in cell-based anticancer assays, agreeing with a clear SAR profile. The most potent compound, (Z)-N-benzyl-4-[4-(4-methoxybenzylidene)-2-methyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl]phenylacetamide (KIM-161), demonstrated cytotoxic IC50 values at 294 and 362 nM against HCT116 colon cancer and HL60 leukemia cell lines, respectively. Profiling of this compound (aqueous solubility, liver microsomal stability, cytochrome P450 inhibition, reactivity with reduced glutathione, and plasma protein binding) confirmed its adequate drug-like properties. Mechanistic studies revealed that this compound does not depend on tubulin or Src kinase inhibition as a factor in forcing HL60 to exit its cell cycle and undergo apoptosis. Instead, KIM-161 downregulated several other kinases such as members of BRK, FLT, and JAK families. It also strongly suppresses signals of ERK1/2, GSK-3α/β, HSP27, and STAT2, while it downregulated AMPKα1 phosphorylation within the HL60 cells. Collectively, these results suggest that phenylacetamide-1H-imidazol-5-one (KIM-161) could be a promising lead compound for further clinical anticancer drug development.
Collapse
Affiliation(s)
- Maan T Khayat
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelsattar M Omar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al-Azhar University, Nasr City, Egypt.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad I Khan
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara M Ibrahim
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yosra A Muhammad
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah M Malebari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamatallah
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moustafa E El-Araby
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Jahn N, Jahn E, Saadati M, Bullinger L, Larson RA, Ottone T, Amadori S, Prior TW, Brandwein JM, Appelbaum FR, Medeiros BC, Tallman MS, Ehninger G, Heuser M, Ganser A, Pallaud C, Gathmann I, Krzykalla J, Benner A, Bloomfield CD, Thiede C, Stone RM, Döhner H, Döhner K. Genomic landscape of patients with FLT3-mutated acute myeloid leukemia (AML) treated within the CALGB 10603/RATIFY trial. Leukemia 2022; 36:2218-2227. [PMID: 35922444 PMCID: PMC9417991 DOI: 10.1038/s41375-022-01650-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
The aim of this study was to characterize the mutational landscape of patients with FLT3-mutated acute myeloid leukemia (AML) treated within the randomized CALGB 10603/RATIFY trial evaluating intensive chemotherapy plus the multi-kinase inhibitor midostaurin versus placebo. We performed sequencing of 262 genes in 475 patients: mutations occurring concurrently with the FLT3-mutation were most frequent in NPM1 (61%), DNMT3A (39%), WT1 (21%), TET2 (12%), NRAS (11%), RUNX1 (11%), PTPN11 (10%), and ASXL1 (8%) genes. To assess effects of clinical and genetic features and their possible interactions, we fitted random survival forests and interpreted the resulting variable importance. Highest prognostic impact was found for WT1 and NPM1 mutations, followed by white blood cell count, FLT3 mutation type (internal tandem duplications vs. tyrosine kinase domain mutations), treatment (midostaurin vs. placebo), ASXL1 mutation, and ECOG performance status. When evaluating two-fold variable combinations the most striking effects were found for WT1:NPM1 (with NPM1 mutation abrogating the negative effect of WT1 mutation), and for WT1:treatment (with midostaurin exerting a beneficial effect in WT1-mutated AML). This targeted gene sequencing study provides important, novel insights into the genomic background of FLT3-mutated AML including the prognostic impact of co-mutations, specific gene-gene interactions, and possible treatment effects of midostaurin.
Collapse
Affiliation(s)
- Nikolaus Jahn
- grid.410712.10000 0004 0473 882XDepartment of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Ekaterina Jahn
- grid.410712.10000 0004 0473 882XDepartment of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | - Lars Bullinger
- grid.6363.00000 0001 2218 4662Department of Hematology, Oncology and Tumor Immunology, Charité University, Berlin, Germany
| | - Richard A. Larson
- grid.170205.10000 0004 1936 7822Department of Medicine and Comprehensive Cancer Center, University of Chicago, Chicago, IL USA
| | - Tiziana Ottone
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy ,grid.414603.4Santa Lucia Foundation, Neuro-Oncohematology, I.R.C.C.S., Rome, Italy
| | - Sergio Amadori
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Thomas W. Prior
- grid.67105.350000 0001 2164 3847Case Western Reserve University, Cleveland, OH USA
| | - Joseph M. Brandwein
- grid.17089.370000 0001 2190 316XDepartment of Medicine, University of Alberta, Edmonton, AB Canada
| | - Frederick R. Appelbaum
- grid.270240.30000 0001 2180 1622Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Bruno C. Medeiros
- grid.168010.e0000000419368956Division of Hematology, Stanford Comprehensive Cancer Center, Stanford University, Stanford, CA USA
| | - Martin S. Tallman
- grid.51462.340000 0001 2171 9952Division of Hematologic Malignancies, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Gerhard Ehninger
- grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Michael Heuser
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Celine Pallaud
- grid.419481.10000 0001 1515 9979Novartis Pharmaceuticals, Basel, Switzerland
| | - Insa Gathmann
- grid.419481.10000 0001 1515 9979Novartis Pharmaceuticals, Basel, Switzerland
| | - Julia Krzykalla
- grid.7497.d0000 0004 0492 0584Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Axel Benner
- grid.7497.d0000 0004 0492 0584Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Clara D. Bloomfield
- grid.261331.40000 0001 2285 7943The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
| | - Christian Thiede
- grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Richard M. Stone
- grid.65499.370000 0001 2106 9910Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA USA
| | - Hartmut Döhner
- grid.410712.10000 0004 0473 882XDepartment of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- grid.410712.10000 0004 0473 882XDepartment of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
14
|
Discovery of a Benzimidazole-based Dual FLT3/TrKA Inhibitor Targeting Acute Myeloid Leukemia. Bioorg Med Chem 2021; 56:116596. [DOI: 10.1016/j.bmc.2021.116596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
|
15
|
Young DJ, Nguyen B, Li L, Higashimoto T, Levis MJ, Liu JO, Small D. A method for overcoming plasma protein inhibition of tyrosine kinase inhibitors. Blood Cancer Discov 2021; 2:532-547. [PMID: 34589716 PMCID: PMC8478262 DOI: 10.1158/2643-3230.bcd-20-0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Plasma protein binding reduces potency of staurosporine-derived tyrosine kinase inhibitors against Flt3-mutant AML. “Decoy” drugs interfering with the binding, including mifepristone, can be harnessed to restore the antileukemia activity. FMS-like tyrosine kinase 3 (FLT3) is the most frequently mutated gene in acute myeloid leukemia and a target for tyrosine kinase inhibitors (TKI). FLT3 TKIs have yielded limited improvements to clinical outcomes. One reason for this is TKI inhibition by endogenous factors. We characterized plasma protein binding of FLT3 TKI, specifically staurosporine derivatives (STS-TKI) by alpha-1-acid glycoprotein (AGP), simulating its effects upon drug efficacy. Human AGP inhibits the antiproliferative activity of STS-TKI in FLT3/ITD-dependent cells, with IC50 shifts higher than clinically achievable. This is not seen with nonhuman plasma. Mifepristone cotreatment, with its higher AGP affinity, improves TKI activity despite AGP, yielding IC50s predicted to be clinically effective. In a mouse model of AGP drug inhibition, mifepristone restores midostaurin activity. This suggests combinatorial methods for overcoming plasma protein inhibition of existing TKIs for leukemia as well as providing a platform for investigating the drug–protein interaction space for developing more potent small-molecule agents.
Collapse
Affiliation(s)
- David J Young
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bao Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tomoyasu Higashimoto
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark J Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jun O Liu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules 2021; 11:biom11070972. [PMID: 34356596 PMCID: PMC8301989 DOI: 10.3390/biom11070972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) impairs neuronal function and introduces a complex cascade of secondary pathologies that limit recovery. Despite decades of preclinical and clinical research, there is a shortage of efficacious treatment options to modulate the secondary response to injury. Protein kinases are crucial signaling molecules that mediate the secondary SCI-induced cellular response and present promising therapeutic targets. The objective of this study was to examine the safety and efficacy of midostaurin—a clinically-approved multi-target protein kinase inhibitor—on cervical SCI pathogenesis. High-throughput analyses demonstrated that intraperitoneal midostaurin injection (25 mg/kg) in C6/7 injured Wistar rats altered the local inflammasome and downregulated adhesive and migratory genes at 24 h post-injury. Treated animals also exhibited enhanced recovery and restored coordination between forelimbs and hindlimbs after injury, indicating the synergistic impact of midostaurin and its dimethyl sulfoxide vehicle to improve functional recovery. Furthermore, histological analyses suggested improved tissue preservation and functionality in the treated animals during the chronic phase of injury. This study serves as a proof-of-concept experiment and demonstrates that systemic midostaurin administration is an effective strategy for mitigating cervical secondary SCI damage.
Collapse
|
17
|
Cairoli R, Ferrara F, Girmenia C, Luppi M, Pea F, Specchia G, Venditti A. Management of patients with acute myeloid leukemia undergoing therapy with midostaurin: a focus on antifungal prophylaxis. Hematol Oncol 2020. [DOI: 10.1002/hon.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Roberto Cairoli
- Department of Hematology Niguarda Cancer Center ASST Grande Ospedale Metropolitano Niguarda Milan Italy
| | | | - Corrado Girmenia
- Department of Hematology, Oncology and Dermatology Azienda Policlinico Umberto I Sapienza University Rome Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences Section of Hematology Azienda Ospedaliero‐Universitaria Policlinico University of Modena and Reggio Emilia Modena Italy
| | - Federico Pea
- Department of Medicine University of Udine Udine Italy
- Institute of Clinical Pharmacology Santa Maria della Misericordia University Hospital of Udine ASUIUD Udine Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation Hematology Section University of Bari Bari Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention Fondazione Policlinico Tor Vergata University of Rome “Tor Vergata” Rome Italy
| |
Collapse
|
18
|
Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood 2020; 135:371-380. [PMID: 31826241 DOI: 10.1182/blood.2019002697] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with acute myeloid leukemia (AML) harboring FLT3 internal tandem duplications (ITDs) have poor outcomes, in particular AML with a high (≥0.5) mutant/wild-type allelic ratio (AR). The 2017 European LeukemiaNet (ELN) recommendations defined 4 distinct FLT3-ITD genotypes based on the ITD AR and the NPM1 mutational status. In this retrospective exploratory study, we investigated the prognostic and predictive impact of the NPM1/FLT3-ITD genotypes categorized according to the 2017 ELN risk groups in patients randomized within the RATIFY trial, which evaluated the addition of midostaurin to standard chemotherapy. The 4 NPM1/FLT3-ITD genotypes differed significantly with regard to clinical and concurrent genetic features. Complete ELN risk categorization could be done in 318 of 549 trial patients with FLT3-ITD AML. Significant factors for response after 1 or 2 induction cycles were ELN risk group and white blood cell (WBC) counts; treatment with midostaurin had no influence. Overall survival (OS) differed significantly among ELN risk groups, with estimated 5-year OS probabilities of 0.63, 0.43, and 0.33 for favorable-, intermediate-, and adverse-risk groups, respectively (P < .001). A multivariate Cox model for OS using allogeneic hematopoietic cell transplantation (HCT) in first complete remission as a time-dependent variable revealed treatment with midostaurin, allogeneic HCT, ELN favorable-risk group, and lower WBC counts as significant favorable factors. In this model, there was a consistent beneficial effect of midostaurin across ELN risk groups.
Collapse
|
19
|
Weisberg E, Meng C, Case AE, Tiv HL, Gokhale PC, Buhrlage SJ, Yang J, Liu X, Wang J, Gray N, Adamia S, Sattler M, Stone R, Griffin JD. Effects of the multi-kinase inhibitor midostaurin in combination with chemotherapy in models of acute myeloid leukaemia. J Cell Mol Med 2020; 24:2968-2980. [PMID: 31967735 PMCID: PMC7077552 DOI: 10.1111/jcmm.14927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
Recently, several targeted agents have been developed for specific subsets of patients with acute myeloid leukaemia (AML), including midostaurin, the first FDA‐approved FLT3 inhibitor for newly diagnosed patients with FLT3 mutations. However, in the initial Phase I/II clinical trials, some patients without FLT3 mutations had transient responses to midostaurin, suggesting that this multi‐targeted kinase inhibitor might benefit AML patients more broadly. Here, we demonstrate submicromolar efficacy of midostaurin in vitro and efficacy in vivo against wild‐type (wt) FLT3‐expressing AML cell lines and primary cells, and we compare its effectiveness with that of other FLT3 inhibitors currently in clinical trials. Midostaurin was found to synergize with standard chemotherapeutic drugs and some targeted agents against AML cells without mutations in FLT3. The mechanism may involve, in part, the unique kinase profile of midostaurin that includes proteins implicated in AML transformation, such as SYK or KIT, or inhibition of ERK pathway or proviability signalling. Our findings support further investigation of midostaurin as a chemosensitizing agent in AML patients without FLT3 mutations.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abigail E Case
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hong L Tiv
- Experimental Therapeutic Core, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutic Core, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sophia Adamia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The Dual Roles of the Atypical Protein Kinase Cs in Cancer. Cancer Cell 2019; 36:218-235. [PMID: 31474570 PMCID: PMC6751000 DOI: 10.1016/j.ccell.2019.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023]
Abstract
Atypical protein kinase C (aPKC) isozymes, PKCλ/ι and PKCζ, are now considered fundamental regulators of tumorigenesis. However, the specific separation of functions that determine their different roles in cancer is still being unraveled. Both aPKCs have pleiotropic context-dependent functions that can translate into tumor-promoter or -suppressive functions. Here, we review early and more recent literature to discuss how the different tumor types, and their microenvironments, might account for the selective signaling of each aPKC isotype. This is of clinical relevance because a better understanding of the roles of these kinases is essential for the design of new anti-cancer treatments.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 2019; 144:19-50. [DOI: 10.1016/j.phrs.2019.03.006] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|