1
|
Vissers C, Sinha A, Ming GL, Song H. The epitranscriptome in stem cell biology and neural development. Neurobiol Dis 2020; 146:105139. [PMID: 33065280 DOI: 10.1016/j.nbd.2020.105139] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/26/2022] Open
Abstract
The blossoming field of epitranscriptomics has recently garnered attention across many fields by findings that chemical modifications on RNA have immense biological consequences. Methylation of nucleotides in RNA, including N6-methyladenosine (m6A), 2-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), and isomerization of uracil to pseudouridine (Ψ), have the potential to alter RNA processing events and contribute to developmental processes and different diseases. Though the abundance and roles of some RNA modifications remain contentious, the epitranscriptome is thought to be especially relevant in stem cell biology and neurobiology. In particular, m6A occurs at the highest levels in the brain and plays major roles in embryonic stem cell differentiation, brain development, and neurodevelopmental disorders. However, studies in these areas have reported conflicting results on epitranscriptomic regulation of stem cell pluripotency and mechanisms in neural development. In this review we provide an overview of the current understanding of several RNA modifications and disentangle the various findings on epitranscriptomic regulation of stem cell biology and neural development.
Collapse
Affiliation(s)
- Caroline Vissers
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Biophysics, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Aniketa Sinha
- Department of Biochemistry and Biophysics, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Zhu H, Gan X, Jiang X, Diao S, Wu H, Hu J. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res 2019; 38:163. [PMID: 30987661 PMCID: PMC6463658 DOI: 10.1186/s13046-019-1159-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background ALKBH5 regulated the malignant behavior of breast cancer and glioblastoma. However, the expression and function of ALKBH5 in epithelial ovarian cancer have not yet been determined. In the present study, we investigated the expression and function of ALKBH5 in epithelial ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as an early diagnostic marker. Methods Immunohistochemistry and western blot were used to detect protein expression. Gene silencing and over-expression experiment were used to study gene function. Cell proliferation assay and Matrigel invasion assays were used to detect cell proliferation and invasion, respectively. The nude mouse tumor formation experiment was used to evaluate the growth of cells in vivo. Results The expression of ALKBH5 was found to be increased in epithelial ovarian cancer tissue as compared to the normal ovarian tissues. The silencing of ALKBH5 in SKOV3 cells enhanced the autophagy and inhibited the proliferation and invasion in vitro and in vivo, whereas the ectopic expression of ALKBH5 in A2780 cells exerted an opposite effect. Mechanical study revealed that ALKBH5 physically interacted with HuR. ALKBH5 activated EGFR-PIK3CA-AKT-mTOR signaling pathway. Also, ALKBH5 enhanced the stability of BCL-2 mRNA and promoted the interaction between Bcl-2 and Beclin1. Conclusion Overall, the present study identified ALKBH5 as a candidate oncogene in epithelial ovarian cancer and a potential target for ovarian cancer therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1159-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Xiaoling Gan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Xingwei Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Shuai Diao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China.
| |
Collapse
|