1
|
Duzdevich D, Carr CE, Colville BWF, Aitken HRM, Szostak JW. Overcoming nucleotide bias in the nonenzymatic copying of RNA templates. Nucleic Acids Res 2024; 52:13515-13529. [PMID: 39530216 DOI: 10.1093/nar/gkae982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The RNA World hypothesis posits that RNA was the molecule of both heredity and function during the emergence of life. This hypothesis implies that RNA templates can be copied, and ultimately replicated, without the catalytic aid of evolved enzymes. A major problem with nonenzymatic template-directed polymerization has been the very poor copying of sequences containing rA and rU. Here, we overcome that problem by using a prebiotically plausible mixture of RNA mononucleotides and random-sequence oligonucleotides, all activated by methyl isocyanide chemistry, that direct the uniform copying of arbitrary-sequence templates, including those harboring rA and rU. We further show that the use of this mixture in copying reactions suppresses copying errors while also generating a more uniform distribution of mismatches than observed for simpler systems. We find that oligonucleotide competition for template binding sites, oligonucleotide ligation and the template binding properties of reactant intermediates work together to reduce product sequence bias and errors. Finally, we show that iterative cycling of templated polymerization and activation chemistry improves the yields of random-sequence products. These results for random-sequence template copying are a significant advance in the pursuit of nonenzymatic RNA replication.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Freiburg Institute for Advanced Studies, Albertstraße 19, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, School of Earth and Atmospheric Sciences, 275 Ferst Drive NW, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben W F Colville
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| | - Harry R M Aitken
- Department of Molecular Biology, Center for Computational and Integrative Biology, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Robinson JD, Sammons SR, O'Flaherty DK. Preparation of 2-Aminoimidazole-Activated Substrates for the Study of Nonenzymatic Genome Replication. Curr Protoc 2024; 4:e1119. [PMID: 39183585 DOI: 10.1002/cpz1.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nonenzymatic genome replication is thought to be an important process for primitive lifeforms, but this has yet to be demonstrated experimentally. Recent studies on the nonenzymatic primer extension mechanism mediated by nucleoside 5'-monophosphates (NMPs) activated with 2-aminoimidazole have revealed that imidazolium-bridged dinucleotide intermediates (N*N) account for the majority of the chemical copying process. As a result, an efficacious synthetic pathway for producing substrates activated with an imidazoyl moiety is desirable. This article provides a detailed protocol for the standard dehydrative redox reaction between NMPs and 2-aminoimidazole to produce nucleotide phosphoroimidazolides. In addition, we describe a similar synthetic pathway to produce N*N in high yields for homodimers. Finally, a simple reversed-phase cation exchange step is described to increase NMP solubility, which significantly increases yields for certain substrates. This approach allows for an efficient and cost-effective methodology to prepare high-quality substrates utilized in origins-of-life studies. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 2-aminoimidazolephosphoroimidazolide-activated cytidine Basic Protocol 2: Synthesis of 2-aminoimidazolium-bridged dicytidyl intermediate Basic Protocol 3: Cation exchange of guanosine 5'-monophosphate disodium salt Alternate Protocol: Synthesis of cytidine 5'-phosphoroimidazolide or 2-aminoimidazolium-bridged dicytidyl from cytidine 5'-monophosphate disodium salt.
Collapse
Affiliation(s)
- James D Robinson
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Scott R Sammons
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
3
|
Mittal S, Nisler C, Szostak JW. Simulations predict preferred Mg 2+ coordination in a nonenzymatic primer-extension reaction center. Biophys J 2024; 123:1579-1591. [PMID: 38702884 PMCID: PMC11214020 DOI: 10.1016/j.bpj.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The mechanism by which genetic information was copied prior to the evolution of ribozymes is of great interest because of its importance to the origin of life. The most effective known process for the nonenzymatic copying of an RNA template is primer extension by a two-step pathway in which 2-aminoimidazole-activated nucleotides first react with each other to form an imidazolium-bridged intermediate that subsequently reacts with the primer. Reaction kinetics, structure-activity relationships, and X-ray crystallography have provided insight into the overall reaction mechanism, but many puzzles remain. In particular, high concentrations of Mg2+ are required for efficient primer extension, but the mechanism by which Mg2+ accelerates primer extension remains unknown. By analogy with the mechanism of DNA and RNA polymerases, a role for Mg2+ in facilitating the deprotonation of the primer 3'-hydroxyl is often assumed, but no catalytic metal ion is seen in crystal structures of the primer-extension complex. To explore the potential effects of Mg2+ binding in the reaction center, we performed atomistic molecular dynamics simulations of a series of modeled complexes in which a Mg2+ ion was placed in the reaction center with inner-sphere coordination with different sets of functional groups. Our simulations suggest that coordination of a Mg2+ ion with both O3' of the terminal primer nucleotide and the pro-Sp nonbridging oxygen of the reactive phosphate of an imidazolium-bridged dinucleotide would help to pre-organize the structure of the primer/template substrate complex to favor the primer-extension reaction. Our results suggest that the catalytic metal ion may play an important role in overcoming electrostatic repulsion between a deprotonated O3' and the reactive phosphate of the bridged dinucleotide and lead to testable predictions of the mode of Mg2+ binding that is most relevant to catalysis of primer extension.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Collin Nisler
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois.
| |
Collapse
|
4
|
Fang Z, Pazienza LT, Zhang J, Tam CP, Szostak JW. Catalytic Metal Ion-Substrate Coordination during Nonenzymatic RNA Primer Extension. J Am Chem Soc 2024; 146:10632-10639. [PMID: 38579124 PMCID: PMC11027144 DOI: 10.1021/jacs.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.
Collapse
Affiliation(s)
- Ziyuan Fang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Lydia T. Pazienza
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jian Zhang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Chun Pong Tam
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Callaghan KL, Sherrell PC, Ellis AV. The Impact of Activating Agents on Non-Enzymatic Nucleic Acid Extension Reactions. Chembiochem 2024; 25:e202300859. [PMID: 38282207 DOI: 10.1002/cbic.202300859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Non-enzymatic template-directed primer extension is increasingly being studied for the production of RNA and DNA. These reactions benefit from producing RNA or DNA in an aqueous, protecting group free system, without the need for expensive enzymes. However, these primer extension reactions suffer from a lack of fidelity, low reaction rates, low overall yields, and short primer extension lengths. This review outlines a detailed mechanistic pathway for non-enzymatic template-directed primer extension and presents a review of the thermodynamic driving forces involved in entropic templating. Through the lens of entropic templating, the rate and fidelity of a reaction are shown to be intrinsically linked to the reactivity of the activating agent used. Thus, a strategy is discussed for the optimization of non-enzymatic template-directed primer extension, providing a path towards cost-effective in vitro synthesis of RNA and DNA.
Collapse
Affiliation(s)
- Kimberley L Callaghan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
6
|
Ding D, Fang Z, Kim SC, O’Flaherty DK, Jia X, Stone TB, Zhou L, Szostak JW. Unusual Base Pair between Two 2-Thiouridines and Its Implication for Nonenzymatic RNA Copying. J Am Chem Soc 2024; 146:3861-3871. [PMID: 38293747 PMCID: PMC10870715 DOI: 10.1021/jacs.3c11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
2-Thiouridine (s2U) is a nucleobase modification that confers enhanced efficiency and fidelity both on modern tRNA codon translation and on nonenzymatic and ribozyme-catalyzed RNA copying. We have discovered an unusual base pair between two 2-thiouridines that stabilizes an RNA duplex to a degree that is comparable to that of a native A:U base pair. High-resolution crystal structures indicate similar base-pairing geometry and stacking interactions in duplexes containing s2U:s2U compared to those with U:U pairs. Notably, the C═O···H-N hydrogen bond in the U:U pair is replaced with a C═S···H-N hydrogen bond in the s2U:s2U base pair. The thermodynamic stability of the s2U:s2U base pair suggested that this self-pairing might lead to an increased error frequency during nonenzymatic RNA copying. However, competition experiments show that s2U:s2U base-pairing induces only a low level of misincorporation during nonenzymatic RNA template copying because the correct A:s2U base pair outcompetes the slightly weaker s2U:s2U base pair. In addition, even if an s2U is incorrectly incorporated, the addition of the next base is greatly hindered. This strong stalling effect would further increase the effective fidelity of nonenzymatic RNA copying with s2U. Our findings suggest that s2U may enhance the rate and extent of nonenzymatic copying with only a minimal cost in fidelity.
Collapse
Affiliation(s)
- Dian Ding
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Ziyuan Fang
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Seohyun Chris Kim
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Derek K. O’Flaherty
- Department
of Chemistry, College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xiwen Jia
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Talbot B. Stone
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for RNA Innovation, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lijun Zhou
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for RNA Innovation, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Tran QP, Yi R, Fahrenbach AC. Towards a prebiotic chemoton - nucleotide precursor synthesis driven by the autocatalytic formose reaction. Chem Sci 2023; 14:9589-9599. [PMID: 37712016 PMCID: PMC10498504 DOI: 10.1039/d3sc03185c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The formose reaction is often cited as a prebiotic source of sugars and remains one of the most plausible forms of autocatalysis on the early Earth. Herein, we investigated how cyanamide and 2-aminooxazole, molecules proposed to be present on early Earth and precursors for nonenzymatic ribonucleotide synthesis, mediate the formose reaction using HPLC, LC-MS and 1H NMR spectroscopy. Cyanamide was shown to delay the exponential phase of the formose reaction by reacting with formose sugars to form 2-aminooxazole and 2-aminooxazolines thereby diverting some of these sugars from the autocatalytic cycle, which nonetheless remains intact. Masses for tetrose and pentose aminooxazolines, precursors for nucleotide synthesis including TNA and RNA, were also observed. The results of this work in the context of the chemoton model are further discussed. Additionally, we highlight other prebiotically plausible molecules that could have mediated the formose reaction and alternative prebiotic autocatalytic systems.
Collapse
Affiliation(s)
- Quoc Phuong Tran
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney NSW 2052 Australia
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo 152-8550 Japan
| | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney NSW 2052 Australia
- UNSW RNA Institute, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
8
|
Fontana F, Bellini T, Todisco M. Liquid Crystal Ordering in DNA Double Helices with Backbone Discontinuities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Fontana
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via Vanvitelli 32, 20129 Milano, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via Vanvitelli 32, 20129 Milano, Italy
| | - Marco Todisco
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
9
|
Jia TZ, Nishikawa S, Fujishima K. Sequencing the Origins of Life. BBA ADVANCES 2022; 2:100049. [PMID: 37082609 PMCID: PMC10074849 DOI: 10.1016/j.bbadva.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
One goal of origins of life research is to understand how primitive informational and catalytic biopolymers emerged and evolved. Recently, a number of sequencing techniques have been applied to analysis of replicating and evolving primitive biopolymer systems, providing a sequence-specific and high-resolution view of primitive chemical processes. Here, we review application of sequencing techniques to analysis of synthetic and primitive nucleic acids and polypeptides. This includes next-generation sequencing of primitive polymerization and evolution processes, followed by discussion of other novel biochemical techniques that could contribute to sequence analysis of primitive biopolymer driven chemical systems. Further application of sequencing to origins of life research, perhaps as a life detection technology, could provide insight into the origin and evolution of informational and catalytic biopolymers on early Earth or elsewhere.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Corresponding author
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| |
Collapse
|
10
|
Lu H, Aida H, Kurokawa M, Chen F, Xia Y, Xu J, Li K, Ying BW, Yomo T. Primordial mimicry induces morphological change in Escherichia coli. Commun Biol 2022; 5:24. [PMID: 35017623 PMCID: PMC8752768 DOI: 10.1038/s42003-021-02954-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022] Open
Abstract
The morphology of primitive cells has been the subject of extensive research. A spherical form was commonly presumed in prebiotic studies but lacked experimental evidence in living cells. Whether and how the shape of living cells changed are unclear. Here we exposed the rod-shaped bacterium Escherichia coli to a resource utilization regime mimicking a primordial environment. Oleate was given as an easy-to-use model prebiotic nutrient, as fatty acid vesicles were likely present on the prebiotic Earth and might have been used as an energy resource. Six evolutionary lineages were generated under glucose-free but oleic acid vesicle (OAV)-rich conditions. Intriguingly, fitness increase was commonly associated with the morphological change from rod to sphere and the decreases in both the size and the area-to-volume ratio of the cell. The changed cell shape was conserved in either OAVs or glucose, regardless of the trade-offs in carbon utilization and protein abundance. Highly differentiated mutations present in the genome revealed two distinct strategies of adaption to OAV-rich conditions, i.e., either directly targeting the cell wall or not. The change in cell morphology of Escherichia coli for adapting to fatty acid availability supports the assumption of the primitive spherical form. Lu et al. investigate the evolution of the shape of living cells by generating six experimental lineages of the rod-shaped E. coli under glucose-free conditions in the presence of oleic acid mimicking a primordial environment. The authors show that the morphological changes from rod to sphere accompanied fitness increases and adaptation amongst fatty acid availability supports the assumption of a primitive spherical form.
Collapse
Affiliation(s)
- Hui Lu
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Honoka Aida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Feng Chen
- School of Software Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Yang Xia
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Jian Xu
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Kai Li
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Tetsuya Yomo
- Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|
11
|
Ding D, Zhou L, Giurgiu C, Szostak JW. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates. Nucleic Acids Res 2021; 50:35-45. [PMID: 34893864 PMCID: PMC8754633 DOI: 10.1093/nar/gkab1202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022] Open
Abstract
The identification of nonenzymatic pathways for nucleic acid replication is a key challenge in understanding the origin of life. We have previously shown that nonenzymatic RNA primer extension using 2-aminoimidazole (2AI) activated nucleotides occurs primarily through an imidazolium-bridged dinucleotide intermediate. The reactive nature and preorganized structure of the intermediate increase the efficiency of primer extension but remain insufficient to drive extensive copying of RNA templates containing all four canonical nucleotides. To understand the factors that limit RNA copying, we synthesized all ten 2AI-bridged dinucleotide intermediates and measured the kinetics of primer extension in a model system. The affinities of the ten dinucleotides for the primer/template/helper complexes vary by over 7,000-fold, consistent with nearest neighbor energetic predictions. Surprisingly, the reaction rates at saturating intermediate concentrations still vary by over 15-fold, with the most weakly binding dinucleotides exhibiting a lower maximal reaction rate. Certain noncanonical nucleotides can decrease sequence dependent differences in affinity and primer extension rate, while monomers bridged to short oligonucleotides exhibit enhanced binding and reaction rates. We suggest that more uniform binding and reactivity of imidazolium-bridged intermediates may lead to the ability to copy arbitrary template sequences under prebiotically plausible conditions.
Collapse
Affiliation(s)
- Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Constantin Giurgiu
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Higgs PG. When Is a Reaction Network a Metabolism? Criteria for Simple Metabolisms That Support Growth and Division of Protocells. Life (Basel) 2021; 11:life11090966. [PMID: 34575115 PMCID: PMC8469938 DOI: 10.3390/life11090966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
With the aim of better understanding the nature of metabolism in the first cells and the relationship between the origin of life and the origin of metabolism, we propose three criteria that a chemical reaction system must satisfy in order to constitute a metabolism that would be capable of sustaining growth and division of a protocell. (1) Biomolecules produced by the reaction system must be maintained at high concentration inside the cell while they remain at low or zero concentration outside. (2) The total solute concentration inside the cell must be higher than outside, so there is a positive osmotic pressure that drives cell growth. (3) The metabolic rate (i.e., the rate of mass throughput) must be higher inside the cell than outside. We give examples of small-molecule reaction systems that satisfy these criteria, and others which do not, firstly considering fixed-volume compartments, and secondly, lipid vesicles that can grow and divide. If the criteria are satisfied, and if a supply of lipid is available outside the cell, then continued growth of membrane surface area occurs alongside the increase in volume of the cell. If the metabolism synthesizes more lipid inside the cell, then the membrane surface area can increase proportionately faster than the cell volume, in which case cell division is possible. The three criteria can be satisfied if the reaction system is bistable, because different concentrations can exist inside and out while the rate constants of all the reactions are the same. If the reaction system is monostable, the criteria can only be satisfied if there is a reason why the rate constants are different inside and out (for example, the decay rates of biomolecules are faster outside, or the formation rates of biomolecules are slower outside). If this difference between inside and outside does not exist, a monostable reaction system cannot sustain cell growth and division. We show that a reaction system for template-directed RNA polymerization can satisfy the requirements for a metabolism, even if the small-molecule reactions that make the single nucleotides do not.
Collapse
Affiliation(s)
- Paul G Higgs
- Department of Physics and Astronomy, Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
13
|
Rolling-circle and strand-displacement mechanisms for non-enzymatic RNA replication at the time of the origin of life. J Theor Biol 2021; 527:110822. [PMID: 34214567 DOI: 10.1016/j.jtbi.2021.110822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
It is likely that RNA replication began non-enzymatically, and that polymerases were later selected to speed up the process. We consider replication mechanisms in modern viruses and ask which of these is possible non-enzymatically, using mathematical models and experimental data found in the literature to estimate rates of RNA synthesis and replication. Replication via alternating plus and minus strands is found in some single-stranded RNA viruses. However, if this occurred non-enzymatically it would lead to double-stranded RNA that would not separate. With some form of environmental cycling, such as temperature, salinity, or pH cycling, double-stranded RNA can be melted to form single-stranded RNA, although re-annealing of existing strands would then occur much faster than synthesis of new strands. We show that re-annealing blocks this form of replication at a very low concentration of strands. Other kinds of viruses synthesize linear double strands from single strands and then make new single strands from double strands via strand-displacement. This does not require environmental cycling and is not blocked by re-annealing. However, under non-enzymatic conditions, if strand-displacement occurs from a linear template, we expect the incomplete new strand to be almost always displaced by the tail end of the old strand through toehold-mediated displacement. A third kind of replication in viruses and viroids is rolling-circle replication which occurs via strand-displacement on a circular template. Rolling-circle replication does not require environmental cycling and is not prevented by toehold-mediated displacement. Rolling-circle replication is therefore expected to occur non-enzymatically and is a likely starting point for the evolution of polymerase-catalysed replication.
Collapse
|
14
|
Duzdevich D, Carr CE, Ding D, Zhang SJ, Walton TS, Szostak JW. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension. Nucleic Acids Res 2021; 49:3681-3691. [PMID: 33744957 PMCID: PMC8053118 DOI: 10.1093/nar/gkab173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nonenzymatic copying of RNA templates with activated nucleotides is a useful model for studying the emergence of heredity at the origin of life. Previous experiments with defined-sequence templates have pointed to the poor fidelity of primer extension as a major problem. Here we examine the origin of mismatches during primer extension on random templates in the simultaneous presence of all four 2-aminoimidazole-activated nucleotides. Using a deep sequencing approach that reports on millions of individual template-product pairs, we are able to examine correct and incorrect polymerization as a function of sequence context. We have previously shown that the predominant pathway for primer extension involves reaction with imidazolium-bridged dinucleotides, which form spontaneously by the reaction of two mononucleotides with each other. We now show that the sequences of correctly paired products reveal patterns that are expected from the bridged dinucleotide mechanism, whereas those associated with mismatches are consistent with direct reaction of the primer with activated mononucleotides. Increasing the ratio of bridged dinucleotides to activated mononucleotides, either by using purified components or by using isocyanide-based activation chemistry, reduces the error frequency. Our results point to testable strategies for the accurate nonenzymatic copying of arbitrary RNA sequences.
Collapse
Affiliation(s)
- Daniel Duzdevich
- To whom correspondence should be addressed. Tel: +1 617 726 5102; Fax: +1 617 643 332;
| | - Christopher E Carr
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dian Ding
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie J Zhang
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Travis S Walton
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Kim SC, O'Flaherty DK, Giurgiu C, Zhou L, Szostak JW. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. J Am Chem Soc 2021; 143:3267-3279. [PMID: 33636080 DOI: 10.1021/jacs.0c12955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in prebiotic chemistry are beginning to outline plausible pathways for the synthesis of the canonical ribonucleotides and their assembly into oligoribonucleotides. However, these reaction pathways suggest that many noncanonical nucleotides are likely to have been generated alongside the standard ribonucleotides. Thus, the oligomerization of prebiotically synthesized nucleotides is likely to have led to a highly heterogeneous collection of oligonucleotides comprised of a wide range of types of nucleotides connected by a variety of backbone linkages. How then did relatively homogeneous RNA emerge from this primordial heterogeneity? Here we focus on nonenzymatic template-directed primer extension as a process that would have strongly enriched for homogeneous RNA over the course of multiple cycles of replication. We review the effects on copying the kinetics of nucleotides with altered nucleobase and sugar moieties, when they are present as activated monomers and when they are incorporated into primer and template oligonucleotides. We also discuss three variations in backbone connectivity, all of which are nonheritable and regenerate native RNA upon being copied. The kinetic superiority of RNA synthesis suggests that nonenzymatic copying served as a chemical selection mechanism that allowed relatively homogeneous RNA to emerge from a complex mixture of prebiotically synthesized nucleotides and oligonucleotides.
Collapse
Affiliation(s)
- Seohyun Chris Kim
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Constantin Giurgiu
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Zhou L, Ding D, Szostak JW. The virtual circular genome model for primordial RNA replication. RNA (NEW YORK, N.Y.) 2021; 27:1-11. [PMID: 33028653 PMCID: PMC7749632 DOI: 10.1261/rna.077693.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 05/13/2023]
Abstract
We propose a model for the replication of primordial protocell genomes that builds upon recent advances in the nonenzymatic copying of RNA. We suggest that the original genomes consisted of collections of oligonucleotides beginning and ending at all possible positions on both strands of one or more virtual circular sequences. Replication is driven by feeding with activated monomers and by the activation of monomers and oligonucleotides in situ. A fraction of the annealed configurations of the protocellular oligonucleotides would allow for template-directed oligonucleotide growth by primer extension or ligation. Rearrangements of these annealed configurations, driven either by environmental fluctuations or occurring spontaneously, would allow for continued oligonucleotide elongation. Assuming that shorter oligonucleotides were more abundant than longer ones, replication of the entire genome could occur by the growth of all oligonucleotides by as little as one nucleotide on average. We consider possible scenarios that could have given rise to such protocell genomes, as well as potential routes to the emergence of catalytically active ribozymes and thus the more complex cells of the RNA World.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
17
|
Duffy K, Arangundy-Franklin S, Holliger P. Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 2020; 18:112. [PMID: 32878624 PMCID: PMC7469316 DOI: 10.1186/s12915-020-00803-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Modified nucleic acids, also called xeno nucleic acids (XNAs), offer a variety of advantages for biotechnological applications and address some of the limitations of first-generation nucleic acid therapeutics. Indeed, several therapeutics based on modified nucleic acids have recently been approved and many more are under clinical evaluation. XNAs can provide increased biostability and furthermore are now increasingly amenable to in vitro evolution, accelerating lead discovery. Here, we review the most recent discoveries in this dynamic field with a focus on progress in the enzymatic replication and functional exploration of XNAs.
Collapse
Affiliation(s)
- Karen Duffy
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
18
|
Zhang SJ, Duzdevich D, Szostak JW. Potentially Prebiotic Activation Chemistry Compatible with Nonenzymatic RNA Copying. J Am Chem Soc 2020; 142:14810-14813. [PMID: 32794700 PMCID: PMC9594304 DOI: 10.1021/jacs.0c05300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The nonenzymatic replication of ribonucleic
acid (RNA) may have
enabled the propagation of genetic information during the origin of
life. RNA copying can be initiated in the laboratory with chemically
activated nucleotides, but continued copying requires a source of
chemical energy for in situ nucleotide activation.
Recent work has illuminated a potentially prebiotic cyanosulfidic
chemistry that activates nucleotides, but its application to nonenzymatic
RNA copying had not been demonstrated. Here, we report a novel pathway
that activates RNA nucleotides in a manner compatible with template-directed
nonenzymatic copying. We show that this pathway, which we refer to
as bridge-forming activation, selectively yields the reactive imidazolium-bridged
dinucleotide intermediate required for copying. Our results will enable
more realistic simulations of RNA propagation based on continuous in situ nucleotide activation.
Collapse
Affiliation(s)
- Stephanie J Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Duzdevich
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jack W Szostak
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.,Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
19
|
Walton T, DasGupta S, Duzdevich D, Oh SS, Szostak JW. In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates. Proc Natl Acad Sci U S A 2020; 117:5741-5748. [PMID: 32123094 PMCID: PMC7084097 DOI: 10.1073/pnas.1914367117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothesized central role of RNA in the origin of life suggests that RNA propagation predated the advent of complex protein enzymes. A critical step of RNA replication is the template-directed synthesis of a complementary strand. Two experimental approaches have been extensively explored in the pursuit of demonstrating protein-free RNA synthesis: template-directed nonenzymatic RNA polymerization using intrinsically reactive monomers and ribozyme-catalyzed polymerization using more stable substrates such as biological 5'-triphosphates. Despite significant progress in both approaches in recent years, the assembly and copying of functional RNA sequences under prebiotic conditions remains a challenge. Here, we explore an alternative approach to RNA-templated RNA copying that combines ribozyme catalysis with RNA substrates activated with a prebiotically plausible leaving group, 2-aminoimidazole (2AI). We applied in vitro selection to identify ligase ribozymes that catalyze phosphodiester bond formation between a template-bound primer and a phosphor-imidazolide-activated oligomer. Sequencing revealed the progressive enrichment of 10 abundant sequences from a random sequence pool. Ligase activity was detected in all 10 RNA sequences; all required activation of the ligator with 2AI and generated a 3'-5' phosphodiester bond. We propose that ribozyme catalysis of phosphodiester bond formation using intrinsically reactive RNA substrates, such as imidazolides, could have been an evolutionary step connecting purely nonenzymatic to ribozyme-catalyzed RNA template copying during the origin of life.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Saurja DasGupta
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel Duzdevich
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, South Korea
| | - Jack W Szostak
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114;
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
20
|
Walton T, Zhang W, Li L, Tam CP, Szostak JW. The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides. Angew Chem Int Ed Engl 2019; 58:10812-10819. [PMID: 30908802 DOI: 10.1002/anie.201902050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 11/10/2022]
Abstract
The emergence of the replication of RNA oligonucleotides was a critical step in the origin of life. An important model for the study of nonenzymatic template copying, which would be a key part of any such pathway, involves the reaction of ribonucleoside-5'-phosphorimidazolides with an RNA primer/template complex. The mechanism by which the primer becomes extended by one nucleotide was assumed to be a classical in-line nucleophilic-substitution reaction in which the 3'-hydroxyl of the primer attacks the phosphate of the incoming activated monomer with displacement of the imidazole leaving group. Surprisingly, this simple model has turned out to be incorrect, and the dominant pathway has now been shown to involve the reaction of two activated nucleotides with each other to form a 5'-5'-imidazolium bridged dinucleotide intermediate. Here we review the discovery of this unexpected intermediate, and the chemical, kinetic, and structural evidence for its role in template copying chemistry.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Wen Zhang
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Li Li
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Chun Pong Tam
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Present address: Moderna Inc., Cambridge, MA, 02139, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
21
|
Walton T, Zhang W, Li L, Tam CP, Szostak JW. The Mechanism of Nonenzymatic Template Copying with Imidazole‐Activated Nucleotides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Wen Zhang
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Li Li
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Chun Pong Tam
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
- Dept. of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
- Present address: Moderna Inc. Cambridge MA 02139 USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
- Dept. of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
| |
Collapse
|