1
|
Nakamura T, Singh M, Sugiura M, Kato S, Yamamoto R, Kandori H, Furutani Y. SNap Bond, a Crucial Hydrogen Bond Between Ser in Helix 3 and Asn in Helix 4, Regulates the Structural Dynamics of Heliorhodopsin. J Mol Biol 2024; 436:168666. [PMID: 38880378 DOI: 10.1016/j.jmb.2024.168666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Heliorhodopsin (HeR) is a new rhodopsin family discovered in 2018 through functional metagenomic analysis. Similar to microbial rhodopsins, HeR has an all-trans retinal chromophore, and its photoisomerization to the 13-cis form triggers a relatively slow photocycle with sequential intermediate states (K, M, and O intermediates). The O intermediate has a relatively long lifetime and is a putative active state for transferring signals or regulating enzymatic reactions. Although the first discovered HeR, 48C12, was found in bacteria and the second HeR (TaHeR) was found in archaea, their key amino acid residues and molecular architectures have been recognized to be well conserved. Nevertheless, the rise and decay kinetics of the O intermediate are faster in 48C12 than in TaHeR. Here, using a new infrared spectroscopic technique with quantum cascade lasers, we clarified that the hydrogen bond between transmembrane helices (TM) 3 and 4 is essential for the altered O kinetics (Ser112 and Asn138 in 48C12). Interconverting mutants of 48C12 and TaHeR clearly revealed that the hydrogen bond is important for regulating the dynamics of the O intermediate. Overall, our study sheds light on the importance of the hydrogen bond between TM3 and TM4 in heliorhodopsins, similar to the DC gate in channelrhodopsins.
Collapse
Affiliation(s)
- Toshiki Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Masahiro Sugiura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Soichiro Kato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Ryo Yamamoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
2
|
Wijesiri K, Gascón JA. Structural Models of the First Molecular Events in the Heliorhodopsin Photocycle. J Phys Chem B 2024; 128:5966-5972. [PMID: 38877606 DOI: 10.1021/acs.jpcb.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Retinylidene conformations and rearrangements of the hydrogen-bond network in the vicinity of the protonated Schiff base (PSB) play a key role in the proton transfer process in the Heliorhodopsin photocycle. Photoisomerization of the retinylidene chromophore and the formation of photoproducts corresponding to the early intermediates were modeled using a combination of molecular dynamics simulations and quantum mechanical/molecular mechanics calculations. The resulting structures were refined, and the respective excitation energies were calculated. Aided by metadynamics simulations, we constructed a photoisomerized intermediate where the 13-cis retinylidene chromophore is rotated about a parallel pair of double bonds at C13=C14 and C15=NZ double bonds. We demonstrate how the deprotonation of the Schiff base and the concomitant protonation of the Glu107 counterion are only favored because of these rearrangements.
Collapse
Affiliation(s)
- Kithmini Wijesiri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
3
|
Palombo R, Barneschi L, Pedraza-González L, Yang X, Olivucci M. Picosecond quantum-classical dynamics reveals that the coexistence of light-induced microbial and animal chromophore rotary motion modulates the isomerization quantum yield of heliorhodopsin. Phys Chem Chem Phys 2024; 26:10343-10356. [PMID: 38501246 DOI: 10.1039/d4cp00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Rhodopsins are light-responsive proteins forming two vast and evolutionary distinct superfamilies whose functions are invariably triggered by the photoisomerization of a single retinal chromophore. In 2018 a third widespread superfamily of rhodopsins called heliorhodopsins was discovered using functional metagenomics. Heliorhodopsins, with their markedly different structural features with respect to the animal and microbial superfamilies, offer an opportunity to study how evolution has manipulated the chromophore photoisomerization to achieve adaptation. One question is related to the mechanism of such a reaction and how it differs from that of animal and microbial rhodopsins. To address this question, we use hundreds of quantum-classical trajectories to simulate the spectroscopically documented picosecond light-induced dynamics of a heliorhodopsin from the archaea thermoplasmatales archaeon (TaHeR). We show that, consistently with the observations, the trajectories reveal two excited state decay channels. However, inconsistently with previous hypotheses, only one channel is associated with the -C13C14- rotation of microbial rhodopsins while the second channel is characterized by the -C11C12- rotation typical of animal rhodopsins. The fact that such -C11C12- rotation is aborted upon decay and ground state relaxation, explains why illumination of TaHeR only produces the 13-cis isomer with a low quantum efficiency. We argue that the documented lack of regioselectivity in double-bond excited state twisting motion is the result of an "adaptation" that could be completely lost via specific residue substitutions modulating the steric hindrance experienced along the isomerization motion.
Collapse
Affiliation(s)
- Riccardo Palombo
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
| | - Laura Pedraza-González
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, I-56124 Pisa, Italy
| | - Xuchun Yang
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Siena, Italy.
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
4
|
Singh M, Hashimoto M, Katayama K, Furutani Y, Kandori H. Internal Proton Transfer in the Activation of Heliorhodopsin. J Mol Biol 2024; 436:168273. [PMID: 37709010 DOI: 10.1016/j.jmb.2023.168273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Heliorhodopsin (HeR), a recently discovered new rhodopsin family, contains a single counterion of the protonated Schiff base, E108 in HeR from Thermoplasmatales archaeon SG8-52-1 (TaHeR). Upon light absorption, the M and O intermediates form in HeRs, as well as type-1 microbial rhodopsins, indicating that the proton transfer from the Schiff base leads to the activation of HeRs. The present flash photolysis study of TaHeR in the presence of a pH-sensitive dye showed that TaHeR contains a proton-accepting group (PAG) inside protein. Comprehensive mutation study of TaHeR found the E108D mutant abolishing the M formation, which is not only at pH 8, but also at pH 9 and 10. The lack of M observation does not originate from the short lifetime of the M intermediate in E108D, as FTIR spectroscopy revealed that a red-shifted K-like intermediate is long lived in E108D. It is likely that the K-like intermediate returns to the unphotolyzed state without internal proton transfer in E108D. E108 and D108 are the Schiff base counterions of the wild-type and E108D mutant TaHeR, respectively, whereas small difference in length of side chains determine internal proton transfer reaction from the Schiff base. Based on the present finding, we propose that the internal water cluster (four water molecules) constitutes PAG in the M intermediate of TaHeR. In the wild type TaHeR, a protonated water cluster is stabilized by forming a salt bridge with E108. In contrast, slightly shortened counterion (D108) cannot stabilize the protonated water cluster in E108D, and thus impairs internal proton transfer from the Schiff base.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Masanori Hashimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
5
|
Chiba Y, Tsujimura M, Saito K, Ishikita H. pH-Dependent Binding and Releasing Mechanism of Acetate in the Inner Water Cavity of Heliorhodopsin. Biochemistry 2023; 62:2363-2370. [PMID: 37471424 PMCID: PMC10434121 DOI: 10.1021/acs.biochem.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/28/2023] [Indexed: 07/22/2023]
Abstract
The high-resolution structure of heliorhodopsin crystallized at low pH reveals the presence of a planar triangle molecule, acetate, in the inner water cavity. Here, we investigate how the acetate molecule is stabilized at the counterion Glu107 moiety, using molecular dynamics (MD) simulations and a quantum mechanical/molecular mechanical (QM/MM) approach. QM/MM calculations indicate that the density is best described as acetate among triangle acids, including nitric acid and bicarbonate. The calculated protonation state indicates that protonated acetate donates an H-bond to deprotonated Glu107 in the low-pH crystal structure. The observed red-shift of ∼30 nm in the absorption wavelength with pKa ≈ 4 is likely due to the His23/His80 protonation, rather than the Glu107 protonation. MD simulations also show that acetate can exist at the Glu107 moiety only when it is protonated. When ionized, acetate is released from the Glu107 moiety via Asn101 at the channel bottleneck and Arg91 on the intracellular protein surface. These observations could explain how acetate binds at low pH and releases at high pH.
Collapse
Affiliation(s)
- Yoshihiro Chiba
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Masaki Tsujimura
- Department
of Advanced Interdisciplinary Studies, The
University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
6
|
Suzuki S, Kumagai S, Nagashima T, Yamazaki T, Okitsu T, Wada A, Naito A, Katayama K, Inoue K, Kandori H, Kawamura I. Characterization of retinal chromophore and protonated Schiff base in Thermoplasmatales archaeon heliorhodopsin using solid-state NMR spectroscopy. Biophys Chem 2023; 296:106991. [PMID: 36905840 DOI: 10.1016/j.bpc.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Heliorhodopsin (HeR) is a seven-helical transmembrane protein with a retinal chromophore that corresponds to a new rhodopsin family. HeR from the archaebacterium Thermoplasmatales archaeon (TaHeR) exhibits unique features, such as the inverted protein orientation in the membrane compared to other rhodopsins and a long photocycle. Here, we used solid-state nuclear magnetic resonance (NMR) spectroscopy to investigate the 13C and 15N NMR signals of the retinal chromophore and protonated Schiff base (RPSB) in TaHeR embedded in POPE/POPG membrane. Although the 14- and 20-13C retinal signals indicated 13-trans/15-anti (all-trans) configurations, the 20-13C chemical shift value was different from that of other microbial rhodopsins, indicating weakly steric hinderance between Phe203 and the C20 methyl group. 15N RPSB/λmax plot deviated from the linear correlation based on retinylidene-halide model compounds. Furthermore, 15N chemical shift anisotropy (CSA) suggested that Ser112 and Ser234 polar residues distinguish the electronic environment tendencies of RPSB from those of other microbial rhodopsins. Our NMR results revealed that the retinal chromophore and the RPSB in TaHeR exhibit unique electronic environments.
Collapse
Affiliation(s)
- Shibuki Suzuki
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Sari Kumagai
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Okitsu
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
7
|
Shim JG, Cho SG, Kim SH, Chuon K, Meas S, Choi A, Jung KH. Heliorhodopsin Helps Photolyase to Enhance the DNA Repair Capacity. Microbiol Spectr 2022; 10:e0221522. [PMID: 36219103 PMCID: PMC9769723 DOI: 10.1128/spectrum.02215-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/24/2022] [Indexed: 01/06/2023] Open
Abstract
Light quality is a significant factor for living organisms that have photosensory systems, such as rhodopsin, a seven alpha-helical transmembrane protein with the retinal chromophore. Here, we report, for the first time, the function of new rhodopsin, which is an inverted 7-transmembrane protein, isolated from Trichococcus flocculiformis. T. flocculiformis heliorhodopsin (TfHeR) works as a regulatory helper rhodopsin that binds with class 2 cyclobutane pyrimidine dimer (CPDII) photolyase to broaden the spectrum and upregulate DNA repair activity. We have confirmed their interaction through isothermal titration calorimetry (dissociation constant of 21.7 μM) and identified the charged residues for the interaction. Based on in vivo and in vitro experiments, we showed that the binding of heliorhodopsin with photolyase improved photolyase activity by about 3-fold to repair UV-caused DNA damage. Also, the DNA repair activity of TfHeR/T. flocculiformis photolyase (TfPHR) was observed in the presence of green light. Our results suggested that heliorhodopsin directly controls the activity of photolyase and coevolves to broaden the activity spectrum by protein-protein interaction. IMPORTANCE This study reports a function for Heliorhodopsin working as a regulatory helper rhodopsin that with CPDII photolyase to broaden the spectrum and upregulating the DNA repair activity. Our results suggested that heliorhodopsin directly controls photolyase activity and coevolves to broaden the DNA repair capacity by protein-protein interaction.
Collapse
Affiliation(s)
- Jin-gon Shim
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Shin-Gyu Cho
- Department of Life Science, Sogang University, Seoul, South Korea
- Research Institute for Basic Science, Sogang University, Seoul, South Korea
| | - Se-Hwan Kim
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Kimleng Chuon
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Seanghun Meas
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Ahreum Choi
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang-gun, Gyeongsangbuk-do, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul, South Korea
| |
Collapse
|
8
|
Tsujimura M, Chiba Y, Saito K, Ishikita H. Proton transfer and conformational changes along the hydrogen bond network in heliorhodopsin. Commun Biol 2022; 5:1336. [PMID: 36474019 PMCID: PMC9726877 DOI: 10.1038/s42003-022-04311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Heliorhodopsin releases a proton from the Schiff base during the L-state to M-state transition but not toward the protein bulk surface. Here we investigate proton transfer and induced structural changes along the H-bond network in heliorhodopsin using a quantum mechanical/molecular mechanical approach and molecular dynamics simulations. Light-induced proton transfer could occur from the Schiff base toward Glu107, reorienting Ser76, followed by subsequent proton transfer toward His80. His80 protonation induces the reorientation of Trp246 on the extracellular surface, originating from the electrostatic interaction that propagates along the transmembrane H-bond network [His80…His23…H2O[H23/Q26]…Gln26…Trp246] over a distance of 15 Å. Furthermore, it induces structural fluctuation on the intracellular side in the H-bond network [His80…Asn16…Tyr92…Glu230…Arg104…Glu149], opening the inner cavity at the Tyr92 moiety. These may be a basis of how light-induced proton transfer causes conformational changes during the M-state to O-state transition.
Collapse
Affiliation(s)
- Masaki Tsujimura
- grid.26999.3d0000 0001 2151 536XDepartment of Advanced Interdisciplinary Studies, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| | - Yoshihiro Chiba
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan
| | - Keisuke Saito
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| | - Hiroshi Ishikita
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| |
Collapse
|
9
|
Shim J, Choun K, Kang K, Kim J, Cho S, Jung K. The binding of secondary chromophore for thermally stable rhodopsin makes more stable with temperature. Protein Sci 2022. [DOI: 10.1002/pro.4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin‐gon Shim
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kimleng Choun
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kun‐Wook Kang
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Ji‐Hyun Kim
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Shin‐Gyu Cho
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| | - Kwang‐Hwan Jung
- Department of Life Science and Institute of Biological Interfaces Sogang University Seoul South Korea
| |
Collapse
|
10
|
Besaw JE, Reichenwallner J, De Guzman P, Tucs A, Kuo A, Morizumi T, Tsuda K, Sljoka A, Miller RJD, Ernst OP. Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway. Sci Rep 2022; 12:13955. [PMID: 35977989 PMCID: PMC9385722 DOI: 10.1038/s41598-022-17716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Within the microbial rhodopsin family, heliorhodopsins (HeRs) form a phylogenetically distinct group of light-harvesting retinal proteins with largely unknown functions. We have determined the 1.97 Å resolution X-ray crystal structure of Thermoplasmatales archaeon SG8-52-1 heliorhodopsin (TaHeR) in the presence of NaCl under acidic conditions (pH 4.5), which complements the known 2.4 Å TaHeR structure acquired at pH 8.0. The low pH structure revealed that the hydrophilic Schiff base cavity (SBC) accommodates a chloride anion to stabilize the protonated retinal Schiff base when its primary counterion (Glu-108) is neutralized. Comparison of the two structures at different pH revealed conformational changes connecting the SBC and the extracellular loop linking helices A-B. We corroborated this intramolecular signaling transduction pathway with computational studies, which revealed allosteric network changes propagating from the perturbed SBC to the intracellular and extracellular space, suggesting TaHeR may function as a sensory rhodopsin. This intramolecular signaling mechanism may be conserved among HeRs, as similar changes were observed for HeR 48C12 between its pH 8.8 and pH 4.3 structures. We additionally performed DEER experiments, which suggests that TaHeR forms possible dimer-of-dimer associations which may be integral to its putative functionality as a light sensor in binding a transducer protein.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jörg Reichenwallner
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paolo De Guzman
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Anling Kuo
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0047, Japan
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada.
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
11
|
Sephus CD, Fer E, Garcia AK, Adam ZR, Schwieterman EW, Kaçar B. Earliest photic zone niches probed by ancestral microbial rhodopsins. Mol Biol Evol 2022; 39:6582242. [PMID: 35524714 PMCID: PMC9117797 DOI: 10.1093/molbev/msac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For billions of years, life has continuously adapted to dynamic physical conditions near the Earth’s surface. Fossils and other preserved biosignatures in the paleontological record are the most direct evidence for reconstructing the broad historical contours of this adaptive interplay. However, biosignatures dating to Earth’s earliest history are exceedingly rare. Here, we combine phylogenetic inference of primordial rhodopsin proteins with modeled spectral features of the Precambrian Earth environment to reconstruct the paleobiological history of this essential family of photoactive transmembrane proteins. Our results suggest that ancestral microbial rhodopsins likely acted as light-driven proton pumps and were spectrally tuned toward the absorption of green light, which would have enabled their hosts to occupy depths in a water column or biofilm where UV wavelengths were attenuated. Subsequent diversification of rhodopsin functions and peak absorption frequencies was enabled by the expansion of surface ecological niches induced by the accumulation of atmospheric oxygen. Inferred ancestors retain distinct associations between extant functions and peak absorption frequencies. Our findings suggest that novel information encoded by biomolecules can be used as “paleosensors” for conditions of ancient, inhabited niches of host organisms not represented elsewhere in the paleontological record. The coupling of functional diversification and spectral tuning of this taxonomically diverse protein family underscores the utility of rhodopsins as universal testbeds for inferring remotely detectable biosignatures on inhabited planetary bodies.
Collapse
Affiliation(s)
- Cathryn D Sephus
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Evrim Fer
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda K Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary R Adam
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Edward W Schwieterman
- Blue Marble Space Institute of Science, Seattle, WA, USA.,Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| | - Betül Kaçar
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Chazan A, Rozenberg A, Mannen K, Nagata T, Tahan R, Yaish S, Larom S, Inoue K, Béjà O, Pushkarev A. Diverse heliorhodopsins detected via functional metagenomics in freshwater Actinobacteria, Chloroflexi and Archaea. Environ Microbiol 2022; 24:110-121. [PMID: 34984789 DOI: 10.1111/1462-2920.15890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022]
Abstract
The recently discovered rhodopsin family of heliorhodopsins (HeRs) is abundant in diverse microbial environments. So far, the functional and biological roles of HeRs remain unknown. To tackle this issue, we combined experimental and computational screens to gain some novel insights. Here, 10 readily expressed HeR genes were found using functional metagenomics on samples from two freshwater environments. These HeRs originated from diverse prokaryotic groups: Actinobacteria, Chloroflexi and Archaea. Heterologously expressed HeRs absorbed light in the green and yellow wavelengths (543-562 nm) and their photocycles exhibited diverse kinetic characteristics. To approach the physiological function of the HeRs, we used our environmental clones along with thousands of microbial genomes to analyze genes neighbouring HeRs. The strongest association was found with the DegV family involved in activation of fatty acids, which allowed us to hypothesize that HeRs might be involved in light-induced membrane lipid modifications.
Collapse
Affiliation(s)
- Ariel Chazan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Andrey Rozenberg
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Kentaro Mannen
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ran Tahan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Shir Yaish
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Shirley Larom
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Alina Pushkarev
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
13
|
Gordeliy V, Kovalev K, Bamberg E, Rodriguez-Valera F, Zinovev E, Zabelskii D, Alekseev A, Rosselli R, Gushchin I, Okhrimenko I. Microbial Rhodopsins. Methods Mol Biol 2022; 2501:1-52. [PMID: 35857221 DOI: 10.1007/978-1-0716-2329-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first microbial rhodopsin, a light-driven proton pump bacteriorhodopsin from Halobacterium salinarum (HsBR), was discovered in 1971. Since then, this seven-α-helical protein, comprising a retinal molecule as a cofactor, became a major driver of groundbreaking developments in membrane protein research. However, until 1999 only a few archaeal rhodopsins, acting as light-driven proton and chloride pumps and also photosensors, were known. A new microbial rhodopsin era started in 2000 when the first bacterial rhodopsin, a proton pump, was discovered. Later it became clear that there are unexpectedly many rhodopsins, and they are present in all the domains of life and even in viruses. It turned out that they execute such a diversity of functions while being "nearly the same." The incredible evolution of the research area of rhodopsins and the scientific and technological potential of the proteins is described in the review with a focus on their function-structure relationships.
Collapse
Affiliation(s)
- Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitrii Zabelskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Riccardo Rosselli
- Departamento de Fisiología, Genetica y Microbiología. Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
14
|
Hahn MW, Pitt A, Koll U, Schmidt J, Maresca JA, Neumann-Schaal M. Aurantimicrobium photophilum sp. nov., a non-photosynthetic bacterium adjusting its metabolism to the diurnal light cycle and reclassification of Cryobacterium mesophilum as Terrimesophilobacter mesophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34431766 DOI: 10.1099/ijsem.0.004975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aerobic primarily chemoorganotrophic actinobacterial strain MWH-Mo1T was isolated from a freshwater lake and is characterized by small cell lengths of less than 1 µm, small cell volumes of 0.05-0.06 µm3 (ultramicrobacterium), a small genome size of 1.75 Mbp and, at least for an actinobacterium, a low DNA G+C content of 54.6 mol%. Phylogenetic analyses based on concatenated amino acid sequences of 116 housekeeping genes suggested the type strain of Aurantimicrobium minutum affiliated with the family Microbacteriaceae as its closest described relative. Strain MWH-Mo1T shares with the type strain of that species a 16S rRNA gene sequence similarity of 99.6 % but the genomes of the two strains share an average nucleotide identity of only 79.3 %. Strain MWH-Mo1T is in many genomic, phenotypic and chemotaxonomic characteristics quite similar to the type strain of A. minutum. Previous intensive investigations revealed two unusual traits of strain MWH-Mo1T. Although the strain is not known to be phototrophic, the metabolism is adjusted to the diurnal light cycle by up- and down-regulation of genes in light and darkness. This results in faster growth in the presence of light. Additionally, a cell size-independent protection against predation by bacterivorous flagellates, most likely mediated by a proteinaceous cell surface structure, was demonstrated. For the previously intensively investigated aerobic chemoorganotrophic actinobacterial strain MWH-Mo1T (=CCUG 56426T=DSM 107758T), the establishment of the new species Aurantimicrobium photophilum sp. nov. is proposed.
Collapse
Affiliation(s)
- Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Ulrike Koll
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, University of Innsbruck, Salzburg, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Meina Neumann-Schaal
- Junior Research Group Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
15
|
Tomida S, Kitagawa S, Kandori H, Furutani Y. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. J Phys Chem B 2021; 125:8331-8341. [PMID: 34292728 DOI: 10.1021/acs.jpcb.1c01907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heliorhodopsin (HeR) is a new class of the rhodopsin family discovered in 2018 through functional metagenomic analysis (named 48C12). Similar to typical microbial rhodopsins, HeR possesses seven transmembrane (TM) α-helices and an all-trans-retinal covalently bonded to the lysine residue on TM7 via a protonated Schiff base. Remarkably, the HeR membrane topology is inverted compared with that of typical microbial rhodopsins. The X-ray crystal structure of HeR 48C12 was elucidated after the first report on a HeR variant from Thermoplasmatales archaeon SG8-52-1, which revealed the water-mediated hydrogen-bonding network connected to the Schiff base region in the cytoplasmic side. Herein, low-temperature light-induced FTIR spectroscopic analyses of HeR 48C12 and 15N isotopically labeled proteins were used to elucidate the structural changes during retinal photoisomerization. N-D stretching vibrations of the protonated retinal Schiff base (PRSB) at 2286 and 2302 cm-1 in the dark state, and 2239 and 2252 cm-1 in the K intermediate were observed. The frequency changes indicated that the hydrogen bond of PRSB strengthens upon photoisomerization in HeR. Moreover, O-D stretching vibration frequencies of the internal water molecules indicate that the hydrogen-bonding strength decreases concomitantly. Therefore, the PRSB hydrogen bond responds to photoisomerization in an opposite way to the hydrogen-bonding network involving water molecules. No frequency changes of the indole N-H or N-D stretching vibrations of tryptophan residues were observed upon photoisomerization, suggesting that all tryptophan residues in the HeR 48C12 maintained the hydrogen-bonding strengths in the K intermediate. These results provide insights into the molecular mechanism of the energy storage and propagation upon retinal photoisomerization in HeR.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
16
|
Abstract
Microbial rhodopsins are distributed through many microorganisms. Heliorhodopsins are newly discovered but have an unclear function. They have seven transmembrane helices similar to type-I and type-II rhodopsins, but they are different in that the N-terminal region of heliorhodopsin is cytoplasmic. We chose 13 representative heliorhodopsins from various microorganisms, expressed and purified with an N-terminal His tag, and measured the absorption spectra. The 13 natural variants had an absorption maximum (λmax) in the range 530–556 nm similar to proteorhodopsin (λmax = 490–525 nm). We selected several candidate residues that influence rhodopsin color-tuning based on sequence alignment and constructed mutants via site-directed mutagenesis to confirm the spectral changes. We found two important residues located near retinal chromophore that influence λmax. We also predict the 3D structure via homology-modeling of Thermoplasmatales heliorhodopsin. The results indicate that the color-tuning mechanism of type-I rhodopsin can be applied to understand the color-tuning of heliorhodopsin.
Collapse
|
17
|
Lokiarchaeota archaeon schizorhodopsin-2 (LaSzR2) is an inward proton pump displaying a characteristic feature of acid-induced spectral blue-shift. Sci Rep 2020; 10:20857. [PMID: 33257762 PMCID: PMC7704677 DOI: 10.1038/s41598-020-77936-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
The photoreactive protein rhodopsin is widespread in microorganisms and has a variety of photobiological functions. Recently, a novel phylogenetically distinctive group named ‘schizorhodopsin (SzR)’ has been identified as an inward proton pump. We performed functional and spectroscopic studies on an uncharacterised schizorhodopsin from the phylum Lokiarchaeota archaeon. The protein, LaSzR2, having an all-trans-retinal chromophore, showed inward proton pump activity with an absorption maximum at 549 nm. The pH titration experiments revealed that the protonated Schiff base of the retinal chromophore (Lys188, pKa = 12.3) is stabilised by the deprotonated counterion (presumably Asp184, pKa = 3.7). The flash-photolysis experiments revealed the presence of two photointermediates, K and M. A proton was released and uptaken from bulk solution upon the formation and decay of the M intermediate. During the M-decay, the Schiff base was reprotonated by the proton from a proton donating residue (presumably Asp172). These properties were compared with other inward (SzRs and xenorhodopsins, XeRs) and outward proton pumps. Notably, LaSzR2 showed acid-induced spectral ‘blue-shift’ due to the protonation of the counterion, whereas outward proton pumps showed opposite shifts (red-shifts). Thus, we can distinguish between inward and outward proton pumps by the direction of the acid-induced spectral shift.
Collapse
|
18
|
Shihoya W, Inoue K, Singh M, Konno M, Hososhima S, Yamashita K, Ikeda K, Higuchi A, Izume T, Okazaki S, Hashimoto M, Mizutori R, Tomida S, Yamauchi Y, Abe-Yoshizumi R, Katayama K, Tsunoda SP, Shibata M, Furutani Y, Pushkarev A, Béjà O, Uchihashi T, Kandori H, Nureki O. Crystal structure of heliorhodopsin. Nature 2019; 574:132-136. [DOI: 10.1038/s41586-019-1604-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 08/20/2019] [Indexed: 11/10/2022]
|
19
|
Singh M, Katayama K, Béjà O, Kandori H. Anion binding to mutants of the Schiff base counterion in heliorhodopsin 48C12. Phys Chem Chem Phys 2019; 21:23663-23671. [DOI: 10.1039/c9cp04102h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anion binds as the direct H-bonding acceptor of the Schiff base in E107A, while E107Q indirectly accommodates an anion.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| | - Oded Béjà
- Faculty of Biology
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| |
Collapse
|