1
|
Yu XX, Chen KX, Yuan PP, Wang YH, Li HX, Zhao YX, Dai YJ. Asp-tRNA Asn/Glu-tRNA Gln amidotransferase A subunit-like amidase mediates the degradation of insecticide flonicamid by Variovorax boronicumulans CGMCC 4969. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172479. [PMID: 38621543 DOI: 10.1016/j.scitotenv.2024.172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The main metabolic product of the pyridinecarboxamide insecticide flonicamid, N-(4-trifluoromethylnicotinyl)glycinamide (TFNG-AM), has been shown to have very high mobility in soil, leading to its accumulation in the environment. Catabolic pathways of flonicamid have been widely reported, but few studies have focused on the metabolism of TFNG-AM. Here, the rapid transformation of TFNG-AM and production of the corresponding acid product N-(4-trifluoromethylnicotinoyl) glycine (TFNG) by the plant growth-promoting bacterium Variovorax boronicumulans CGMCC 4969 were investigated. With TFNG-AM at an initial concentration of 0.86 mmol/L, 90.70 % was transformed by V. boronicumulans CGMCC 4969 resting cells within 20 d, with a degradation half-life of 4.82 d. A novel amidase that potentially mediated this transformation process, called AmiD, was identified by bioinformatic analyses. The gene encoding amiD was cloned and expressed recombinantly in Escherichia coli, and the enzyme AmiD was characterized. Key amino acid residue Val154, which is associated with the catalytic activity and substrate specificity of signature family amidases, was identified for the first time by homology modeling, structural alignment, and site-directed mutagenesis analyses. When compared to wild-type recombinant AmiD, the mutant AmiD V154G demonstrated a 3.08-fold increase in activity toward TFNG-AM. The activity of AmiD V154G was greatly increased toward aromatic L-phenylalanine amides, heterocyclic TFNG-AM and IAM, and aliphatic asparagine, whereas it was dramatically lowered toward benzamide, phenylacetamide, nicotinamide, acetamide, acrylamide, and hexanamid. Quantitative PCR analysis revealed that AmiD may be a substrate-inducible enzyme in V. boronicumulans CGMCC 4969. The mechanism of transcriptional regulation of AmiD by a member of the AraC family of regulators encoded upstream of the amiD gene was preliminarily investigated. This study deepens our understanding of the mechanisms of metabolism of toxic amides in the environment, providing new ideas for microbial bioremediation.
Collapse
Affiliation(s)
- Xue-Xiu Yu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Pan-Pan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yu-He Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Hua-Xiao Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
2
|
Schleif R. A Career's Work, the l-Arabinose Operon: How It Functions and How We Learned It. EcoSal Plus 2022; 10:eESP00122021. [PMID: 36519894 PMCID: PMC10729937 DOI: 10.1128/ecosalplus.esp-0012-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/20/2021] [Indexed: 06/17/2023]
Abstract
Very few labs have had the good fortune to have been able to focus for more than 50 years on a relatively narrow research topic and to be in a field in which both basic knowledge and the research technology and methods have progressed as rapidly as they have in molecular biology. My research group, first at Brandeis University and then at Johns Hopkins University, has had this opportunity. In this review, therefore, I will describe largely the work from my laboratory that has spanned this period and which was carried out by 40 plus graduate students, several postdoctoral associates, my technician, and me. In addition to presenting the scientific findings or results, I will place many of the topics in scientific context and, because we needed to develop a good many of the experimental methods behind our findings, I will also describe some of these methods and their importance. Also included will be occasional comments on how the research community or my research group functioned. Because a wide variety of approaches were used throughout our work, no ideal organization of this review is apparent. Therefore, I have chosen to use a hybrid structure in which there are six sections. Within each of the sections, experiments and findings will be described roughly in chronological order. Frequent cross references between parts and sections will be made because some findings and experimental approaches could logically have been described in more than one place.
Collapse
|
3
|
Picard HR, Schwingen KS, Green LM, Shis DL, Egan SM, Bennett MR, Swint-Kruse L. Allosteric regulation within the highly interconnected structural scaffold of AraC/XylS homologs tolerates a wide range of amino acid changes. Proteins 2022; 90:186-199. [PMID: 34369028 PMCID: PMC8671227 DOI: 10.1002/prot.26206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
To create bacterial transcription "circuits" for biotechnology, one approach is to recombine natural transcription factors, promoters, and operators. Additional novel functions can be engineered from existing transcription factors such as the E. coli AraC transcriptional activator, for which binding to DNA is modulated by binding L-arabinose. Here, we engineered chimeric AraC/XylS transcription activators that recognized ara DNA binding sites and responded to varied effector ligands. The first step, identifying domain boundaries in the natural homologs, was challenging because (i) no full-length, dimeric structures were available and (ii) extremely low sequence identities (≤10%) among homologs precluded traditional assemblies of sequence alignments. Thus, to identify domains, we built and aligned structural models of the natural proteins. The designed chimeric activators were assessed for function, which was then further improved by random mutagenesis. Several mutational variants were identified for an XylS•AraC chimera that responded to benzoate; two enhanced activation to near that of wild-type AraC. For an RhaR•AraC chimera, a variant with five additional substitutions enabled transcriptional activation in response to rhamnose. These five changes were dispersed across the protein structure, and combinatorial experiments testing subsets of substitutions showed significant non-additivity. Combined, the structure modeling and epistasis suggest that the common AraC/XylS structural scaffold is highly interconnected, with complex intra-protein and inter-domain communication pathways enabling allosteric regulation. At the same time, the observed epistasis and the low sequence identities of the natural homologs suggest that the structural scaffold and function of transcriptional regulation are nevertheless highly accommodating of amino acid changes.
Collapse
Affiliation(s)
- Hunter R. Picard
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Kristen S. Schwingen
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Lisa M. Green
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - David L. Shis
- Department of Biosciences and Department of Bioengineering, Rice University, Houston, TX 77005
| | - Susan M. Egan
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045
| | - Matthew R. Bennett
- Department of Biosciences and Department of Bioengineering, Rice University, Houston, TX 77005
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160,To whom correspondence should be addressed: ; 913-588-0399
| |
Collapse
|
4
|
Gárate F, Dokas S, Lanfranco MF, Canavan C, Wang I, Correia JJ, Maillard RA. cAMP is an allosteric modulator of DNA-binding specificity in the cAMP receptor protein from Mycobacterium tuberculosis. J Biol Chem 2021; 296:100480. [PMID: 33640453 PMCID: PMC8026907 DOI: 10.1016/j.jbc.2021.100480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022] Open
Abstract
Allosteric proteins with multiple subunits and ligand-binding sites are central in regulating biological signals. The cAMP receptor protein from Mycobacterium tuberculosis (CRPMTB) is a global regulator of transcription composed of two identical subunits, each one harboring structurally conserved cAMP- and DNA-binding sites. The mechanisms by which these four binding sites are allosterically coupled in CRPMTB remain unclear. Here, we investigate the binding mechanism between CRPMTB and cAMP, and the linkage between cAMP and DNA interactions. Using calorimetric and fluorescence-based assays, we find that cAMP binding is entropically driven and displays negative cooperativity. Fluorescence anisotropy experiments show that apo-CRPMTB forms high-order CRPMTB–DNA oligomers through interactions with nonspecific DNA sequences or preformed CRPMTB–DNA complexes. Moreover, we find that cAMP prevents and reverses the formation of CRPMTB–DNA oligomers, reduces the affinity of CRPMTB for nonspecific DNA sequences, and stabilizes a 1-to-1 CRPMTB–DNA complex, but does not increase the affinity for DNA like in the canonical CRP from Escherichia coli (CRPEcoli). DNA-binding assays as a function of cAMP concentration indicate that one cAMP molecule per homodimer dissociates high-order CRPMTB–DNA oligomers into 1-to-1 complexes. These cAMP-mediated allosteric effects are lost in the double-mutant L47P/E178K found in CRP from Mycobacterium bovis Bacille Calmette-Guérin (CRPBCG). The functional behavior, thermodynamic stability, and dimerization constant of CRPBCG are not due to additive effects of L47P and E178K, indicating long-range interactions between these two sites. Altogether, we provide a previously undescribed archetype of cAMP-mediated allosteric regulation that differs from CRPEcoli, illustrating that structural homology does not imply allosteric homology.
Collapse
Affiliation(s)
- Fernanda Gárate
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Stephen Dokas
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Maria Fe Lanfranco
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Clare Canavan
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Irina Wang
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - John J Correia
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA.
| |
Collapse
|
5
|
H/D Exchange Characterization of Silent Coupling: Entropy-Enthalpy Compensation in Allostery. Biophys J 2020; 118:2966-2978. [PMID: 32479745 DOI: 10.1016/j.bpj.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022] Open
Abstract
The allosteric coupling constant in K-type allosteric systems is defined as a ratio of the binding of substrate in the absence of effector to the binding of the substrate in the presence of a saturating concentration of effector. As a result, the coupling constant is itself an equilibrium value comprised of a ΔH and a TΔS component. In the scenario in which TΔS completely compensates ΔH, no allosteric influence of effector binding on substrate affinity is observed. However, in this "silent coupling" scenario, the presence of effector causes a change in the ΔH associated with substrate binding. A suggestion has now been made that "silent modulators" are ideal drug leads because they can be modified to act as either allosteric activators or inhibitors. Any attempt to rationally design the effector to be an allosteric activator or inhibitor is likely to be benefitted by knowledge of the mechanism that gives rise to coupling. Hydrogen/deuterium exchange with mass spectrometry detection has now been used to identify regions of proteins that experience conformational and/or dynamic changes in the allosteric regulation. Here, we demonstrate the expected temperature dependence of the allosteric regulation of rabbit muscle pyruvate kinase by Ala to demonstrate that this effector reduces substrate (phosphoenolpyruvate) affinity at 35°C and at 10°C but is silent at intermediate temperatures. We then explore the use of hydrogen/deuterium exchange with mass spectrometry to evaluate the areas of the protein that are modified in the mechanism that gives rise to the silent coupling between Ala and phosphoenolpyruvate. Many of the peptide regions of the protein identified as changing in this silent system (Ala as the effector) were included in changes previously identified for allosteric inhibition by Phe.
Collapse
|