1
|
Ringenbach S, Yoza R, Jones PA, Du M, Klugh KL, Peterson LW, Colabroy KL. Discovery and characterization of l-DOPA 2,3-dioxygenase from Streptomyces hygroscopicus jingganensis. Arch Biochem Biophys 2024; 755:109967. [PMID: 38556098 DOI: 10.1016/j.abb.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
The largest natural reservoir of untapped carbon can be found in the cell-wall strengthening, plant woody-tissue polymer, lignin - a polymer of catechols or 1,2-dihydroxybenzene monomers. The catecholic carbon of lignin could be valorized into feedstocks and natural products by way of catabolic and biosynthetic transformations, including the oxygen-dependent cleavage reaction of extradiol dioxygenase (EDX) enzymes. The EDX l-DOPA 2,3-dioxygenase was first discovered as part of a biosynthetic gene cluster to the natural product antibiotic, lincomycin, and also contributes to the biosyntheses of anthramycin, sibiromycin, tomaymycin, porothramycin and hormaomycin. Using these l-DOPA 2,3-dioxygenases as a starting point, we searched sequence space in order to identify new sources of dioxygenase driven natural product diversity. A "vicinal-oxygen-chelate (VOC) family protein" from Streptomyces hygroscopicus jingganensis was identified using bioinformatic methods and biochemically investigated for dioxygenase activity against a suite of natural and synthetic catechols. Steady-state oxygen consumption assays were used to screen and identify substrates, and a steady-state kinetic model of oxygen consumption was developed to evaluate activity of the S. hygroscopicus jingganensis VOC-family-protein with respect to activity of l-DOPA 2,3-dioxygenases from Streptomyces lincolnensis and Streptomyces sclerotialus. Lastly, these data were integrated with steady-state kinetic methods to observe the formation of the EDX cleavage product with UV-visible spectroscopy. The genomic context and enzymatic activity of the S. hygroscopicus jingganensis VOC family protein are consistent with a l-DOPA 2,3-dioxygenase contained within a cryptic biosynthetic pathway.
Collapse
Affiliation(s)
- Sara Ringenbach
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Riri Yoza
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Paige A Jones
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Muxue Du
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Kameron L Klugh
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Keri L Colabroy
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA.
| |
Collapse
|
2
|
Skolik R, Geldenhuys W, Konkle M, Menze M. Biochemical Control of the Mitochondrial Protein MitoNEET by Biological Thiols and Lipid-derived Electrophiles. ADVANCES IN REDOX RESEARCH 2023; 7:100059. [PMID: 39364216 PMCID: PMC11448853 DOI: 10.1016/j.arres.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
MitoNEET is a mitochondrial [2Fe-2S] protein known for its involvement in cellular metabolism, iron regulation, and oxidative stress. The protein has been associated with diseases ranging from diabetes to Parkinson's disease which has prompted development of compounds designed to selectively target mitoNEET. Unfortunately, drug development is limited due to a lack of understanding on the mechanistic level how mitoNEET integrates into pathophysiological processes. In particular, biological compounds that govern mitoNEET function are still ill defined. We demonstrate an oxygen-dependent reaction with biological thiols catalyzed by mitoNEET. Furthermore, we observed that formation of a covalently linked mitoNEET homodimer is controlled by both thiols and lipid-derived electrophiles. Finally, we demonstrate that reduced glutathione (L-GSH) regulates the reactivity of two lipid-derived biomarkers of oxidative stress, 4-HNE and 4-ONE, towards mitoNEET. We find that exposure to L-GSH prior to treatment with either of the electrophilic aldehydes prevents the formation of the covalently linked mitoNEET dimer. Meanwhile, addition of L-GSH after electrophile treatment recovers mitoNEET from the 4-HNE induced modification but not from the modification induced by 4-ONE. Our results collectively suggest that the thiol-electrophile redox balance governing ferroptotic cell death also controls mitoNEET's state at multiple biochemical levels. These results indicate a possible role for mitoNEET in thiol-mediated oxidative stress and may inform about development of probes designed to modulate mitoNEET activity to improve pathophysiological states.
Collapse
Affiliation(s)
- R.A Skolik
- Department of Biology, University of Louisville, Louisville, KY
| | - W.J. Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV
| | - M.E Konkle
- Department of Chemistry, Ball State University, Muncie, IN
| | - M.A. Menze
- Department of Biology, University of Louisville, Louisville, KY
| |
Collapse
|
3
|
Chang CW, Lin YH, Tsai CH, Kulandaivel S, Yeh YC. Sequential detection of dopamine and L-DOPA by a 2,3-dopa-dioxygenase from Streptomyces sclerotialus. Anal Chim Acta 2022; 1202:339641. [DOI: 10.1016/j.aca.2022.339641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
|
4
|
Goldberg AM, Robinson MK, Starr ES, Marasco RN, Alana AC, Cochrane CS, Klugh KL, Strzeminski DJ, Du M, Colabroy KL, Peterson LW. L-DOPA Dioxygenase Activity on 6-Substituted Dopamine Analogues. Biochemistry 2021; 60:2492-2507. [PMID: 34324302 DOI: 10.1021/acs.biochem.1c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dioxygenase enzymes are essential protein catalysts for the breakdown of catecholic rings, structural components of plant woody tissue. This powerful chemistry is used in nature to make antibiotics and other bioactive materials or degrade plant material, but we have a limited understanding of the breadth and depth of substrate space for these potent catalysts. Here we report steady-state and pre-steady-state kinetic analysis of dopamine derivatives substituted at the 6-position as substrates of L-DOPA dioxygenase, and an analysis of that activity as a function of the electron-withdrawing nature of the substituent. Steady-state and pre-steady-state kinetic data demonstrate the dopamines are impaired in binding and catalysis with respect to the cosubstrate molecular oxygen, which likely afforded spectroscopic observation of an early reaction intermediate, the semiquinone of dopamine. The reaction pathway of dopamine in the pre-steady state is consistent with a nonproductive mode of binding of oxygen at the active site. Despite these limitations, L-DOPA dioxygenase is capable of binding all of the dopamine derivatives and catalyzing multiple turnovers of ring cleavage for dopamine, 6-bromodopamine, 6-carboxydopamine, and 6-cyanodopamine. 6-Nitrodopamine was a single-turnover substrate. The variety of substrates accepted by the enzyme is consistent with an interplay of factors, including the capacity of the active site to bind large, negatively charged groups at the 6-position and the overall oxidizability of each catecholamine, and is indicative of the utility of extradiol cleavage in semisynthetic and bioremediation applications.
Collapse
Affiliation(s)
- Alexander M Goldberg
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Miranda K Robinson
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Erykah S Starr
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Ryan N Marasco
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Alexa C Alana
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - C Skyler Cochrane
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Kameron L Klugh
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - David J Strzeminski
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Muxue Du
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Keri L Colabroy
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| |
Collapse
|