1
|
Moser C, Guschtschin-Schmidt N, Silber M, Flum J, Muhle-Goll C. Substrate Selection Criteria in Regulated Intramembrane Proteolysis. ACS Chem Neurosci 2024; 15:1321-1334. [PMID: 38525994 DOI: 10.1021/acschemneuro.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Alzheimer's disease is the most common form of dementia encountered in an aging population. Characteristic amyloid deposits of Aβ peptides in the brain are generated through cleavage of amyloid precursor protein (APP) by γ-secretase, an intramembrane protease. Cryo-EM structures of substrate γ-secretase complexes revealed details of the process, but how substrates are recognized and enter the catalytic site is still largely ignored. γ-Secretase cleaves a diverse range of substrate sequences without a common consensus sequence, but strikingly, single point mutations within the transmembrane domain (TMD) of specific substrates may greatly affect cleavage efficiencies. Previously, conformational flexibility was hypothesized to be the main criterion for substrate selection. Here we review the 3D structure and dynamics of several γ-secretase substrate TMDs and compare them with mutants shown to affect the cleavage efficiency. In addition, we present structural and dynamic data on ITGB1, a known nonsubstrate of γ-secretase. A comparison of biophysical details between these TMDs and changes generated by introducing crucial mutations allowed us to unravel common principles that differ between substrates and nonsubstrates. We identified three motifs in the investigated substrates: a highly flexible transmembrane domain, a destabilization of the cleavage region, and a basic signature at the end of the transmembrane helix. None of these appears to be exclusive. While conformational flexibility on its own may increase cleavage efficiency in well-known substrates like APP or Notch1, our data suggest that the three motifs seem to be rather variably combined to determine whether a transmembrane helix is efficiently recognized as a γ-secretase substrate.
Collapse
Affiliation(s)
- Celine Moser
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nadja Guschtschin-Schmidt
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Mara Silber
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Julia Flum
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Ortner M, Guschtschin-Schmidt N, Stelzer W, Muhle-Goll C, Langosch D. Permissive Conformations of a Transmembrane Helix Allow Intramembrane Proteolysis by γ-Secretase. J Mol Biol 2023; 435:168218. [PMID: 37536392 DOI: 10.1016/j.jmb.2023.168218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The intramembrane protease γ-secretase activates important signaling molecules, such as Notch receptors. It is still unclear, however, how different elements within the primary structure of substrate transmembrane domains (TMDs) contribute to their cleavability. Using a newly developed yeast-based cleavage assay, we identified three crucial regions within the TMDs of the paralogs Notch1 and Notch3 by mutational and gain-of-function approaches. The AAAA or AGAV motifs within the N-terminal half of the TMDs were found to confer strong conformational flexibility to these TMD helices, as determined by mutagenesis coupled to deuterium/hydrogen exchange. Crucial amino acids within the C-terminal half may support substrate docking into the catalytic cleft of presenilin, the enzymatic subunit of γ-secretase. Further, residues close to the C-termini of the TMDs may stabilize a tripartite β-sheet in the substrate/enzyme complex. NMR structures reveal different extents of helix bending as well as an ability to adopt widely differing conformational substates, depending on the sequence of the N-terminal half. The difference in cleavability between Notch1 and Notch3 TMDs is jointly determined by the conformational repertoires of the TMD helices and the sequences of the C-terminal half, as suggested by mutagenesis and building molecular models. In sum, cleavability of a γ-secretase substrate is enabled by different functions of cooperating TMD regions, which deepens our mechanistic understanding of substrate/non-substrate discrimination in intramembrane proteolysis.
Collapse
Affiliation(s)
- Martin Ortner
- Chair of Biopolymer Chemistry, Technical University of Munich, Freising, Germany
| | - Nadja Guschtschin-Schmidt
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Walter Stelzer
- Chair of Biopolymer Chemistry, Technical University of Munich, Freising, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Dieter Langosch
- Chair of Biopolymer Chemistry, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Cooperation of N- and C-terminal substrate transmembrane domain segments in intramembrane proteolysis by γ-secretase. Commun Biol 2023; 6:177. [PMID: 36792683 PMCID: PMC9931712 DOI: 10.1038/s42003-023-04470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 01/11/2023] [Indexed: 02/17/2023] Open
Abstract
Intramembrane proteases play a pivotal role in biology and medicine, but how these proteases decode cleavability of a substrate transmembrane (TM) domain remains unclear. Here, we study the role of conformational flexibility of a TM domain, as determined by deuterium/hydrogen exchange, on substrate cleavability by γ-secretase in vitro and in cellulo. By comparing hybrid TMDs based on the natural amyloid precursor protein TM domain and an artificial poly-Leu non-substrate, we find that substrate cleavage requires conformational flexibility within the N-terminal half of the TMD helix (TM-N). Robust cleavability also requires the C-terminal TM sequence (TM-C) containing substrate cleavage sites. Since flexibility of TM-C does not correlate with cleavage efficiency, the role of the TM-C may be defined mainly by its ability to form a cleavage-competent state near the active site, together with parts of presenilin, the enzymatic component of γ-secretase. In sum, cleavability of a γ-secretase substrate appears to depend on cooperating TM domain segments, which deepens our mechanistic understanding of intramembrane proteolysis.
Collapse
|
4
|
Papadopoulou AA, Stelzer W, Silber M, Schlosser C, Spitz C, Haug-Kröper M, Straub T, Müller SA, Lichtenthaler SF, Muhle-Goll C, Langosch D, Fluhrer R. Helical stability of the GnTV transmembrane domain impacts on SPPL3 dependent cleavage. Sci Rep 2022; 12:20987. [PMID: 36470941 PMCID: PMC9722940 DOI: 10.1038/s41598-022-24772-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Signal-Peptide Peptidase Like-3 (SPPL3) is an intramembrane cleaving aspartyl protease that causes secretion of extracellular domains from type-II transmembrane proteins. Numerous Golgi-localized glycosidases and glucosyltransferases have been identified as physiological SPPL3 substrates. By SPPL3 dependent processing, glycan-transferring enzymes are deactivated inside the cell, as their active site-containing domain is cleaved and secreted. Thus, SPPL3 impacts on glycan patterns of many cellular and secreted proteins and can regulate protein glycosylation. However, the characteristics that make a substrate a favourable candidate for SPPL3-dependent cleavage remain unknown. To gain insights into substrate requirements, we investigated the function of a GxxxG motif located in the transmembrane domain of N-acetylglucosaminyltransferase V (GnTV), a well-known SPPL3 substrate. SPPL3-dependent secretion of the substrate's ectodomain was affected by mutations disrupting the GxxxG motif. Using deuterium/hydrogen exchange and NMR spectroscopy, we studied the effect of these mutations on the helix flexibility of the GnTV transmembrane domain and observed that increased flexibility facilitates SPPL3-dependent shedding and vice versa. This study provides first insights into the characteristics of SPPL3 substrates, combining molecular biology, biochemistry, and biophysical techniques and its results will provide the basis for better understanding the characteristics of SPPL3 substrates with implications for the substrates of other intramembrane proteases.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Walter Stelzer
- grid.6936.a0000000123222966Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Mara Silber
- grid.7892.40000 0001 0075 5874Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ,grid.7892.40000 0001 0075 5874Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Christine Schlosser
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Charlotte Spitz
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Martina Haug-Kröper
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| | - Tobias Straub
- grid.5252.00000 0004 1936 973XCore Facility Bioinformatics, Biomedical Center, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Stephan A. Müller
- grid.424247.30000 0004 0438 0426DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan F. Lichtenthaler
- grid.424247.30000 0004 0438 0426DZNE – German Center for Neurodegenerative Diseases, Munich, Germany ,grid.15474.330000 0004 0477 2438Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Claudia Muhle-Goll
- grid.7892.40000 0001 0075 5874Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ,grid.7892.40000 0001 0075 5874Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Dieter Langosch
- grid.6936.a0000000123222966Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Regina Fluhrer
- grid.7307.30000 0001 2108 9006Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätstrasse 2, 86159 Augsburg, Germany
| |
Collapse
|
5
|
Spitz C, Schlosser C, Guschtschin-Schmidt N, Stelzer W, Menig S, Götz A, Haug-Kröper M, Scharnagl C, Langosch D, Muhle-Goll C, Fluhrer R. Non-canonical Shedding of TNFα by SPPL2a Is Determined by the Conformational Flexibility of Its Transmembrane Helix. iScience 2020; 23:101775. [PMID: 33294784 PMCID: PMC7689174 DOI: 10.1016/j.isci.2020.101775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Ectodomain (EC) shedding defines the proteolytic removal of a membrane protein EC and acts as an important molecular switch in signaling and other cellular processes. Using tumor necrosis factor (TNF)α as a model substrate, we identify a non-canonical shedding activity of SPPL2a, an intramembrane cleaving aspartyl protease of the GxGD type. Proline insertions in the TNFα transmembrane (TM) helix strongly increased SPPL2a non-canonical shedding, while leucine mutations decreased this cleavage. Using biophysical and structural analysis, as well as molecular dynamic simulations, we identified a flexible region in the center of the TNFα wildtype TM domain, which plays an important role in the processing of TNFα by SPPL2a. This study combines molecular biology, biochemistry, and biophysics to provide insights into the dynamic architecture of a substrate's TM helix and its impact on non-canonical shedding. Thus, these data will provide the basis to identify further physiological substrates of non-canonical shedding in the future.
Collapse
Affiliation(s)
- Charlotte Spitz
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| | - Nadja Guschtschin-Schmidt
- Karlsruhe Institute of Technology, Institute for Biological Interfaces 4, 76344 Eggenstein- Leopoldshafen, Germany and Karlsruhe Institute of Technology, Institute of Organic Chemistry, 76131 Karlsruhe, Germany
| | - Walter Stelzer
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Simon Menig
- Physics of Synthetic Biological Systems, Technische Universität München, Maximus-von-Imhof Forum 4, 85340 Freising, Germany
| | - Alexander Götz
- Present Address: Leibniz Supercomputing Centre, Boltzmannstr. 1, 85748 Garching, Germany
| | - Martina Haug-Kröper
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| | - Christina Scharnagl
- Physics of Synthetic Biological Systems, Technische Universität München, Maximus-von-Imhof Forum 4, 85340 Freising, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Claudia Muhle-Goll
- Karlsruhe Institute of Technology, Institute for Biological Interfaces 4, 76344 Eggenstein- Leopoldshafen, Germany and Karlsruhe Institute of Technology, Institute of Organic Chemistry, 76131 Karlsruhe, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
- DZNE – German Center for Neurodegenerative Diseases, Feodor-Lynen-Str 17, 81377 Munich, Germany
| |
Collapse
|