1
|
Xiao F, Sun M, Zhang L, Lei X. Investigation of Peptide Labeling with ortho-Phthalaldehyde and 2-Acylbenzaldehyde. J Org Chem 2024; 89:14619-14624. [PMID: 37607402 DOI: 10.1021/acs.joc.3c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
ortho-Phthalaldehyde (OPA) with high reactivity to the amine group has been widely used to modify proteins. We discovered new modifications of OPA and 2-acylbenzaldehyde and proposed the reaction mechanism. Using isotope labeling mass spectrometry-based experiment, we identified new cross-linking properties of OPA and 2-acylbenzaldehyde. This reactivity revealed that OPA has the potential to probe proximal amino acids in biological systems.
Collapse
Affiliation(s)
- Fan Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Mengze Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | | | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| |
Collapse
|
2
|
Stevens R, Thompson JDF, Fournier JCL, Burley GA, Battersby DJ, Miah AH. Innovative, combinatorial and high-throughput approaches to degrader synthesis. Chem Soc Rev 2024; 53:4838-4861. [PMID: 38596888 DOI: 10.1039/d3cs01127e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Targeted protein degraders such as PROTACs and molecular glues are a rapidly emerging therapeutic modality within industry and academia. Degraders possess unique mechanisms of action that lead to the removal of specific proteins by co-opting the cell's natural degradation mechanisms via induced proximity. Their optimisation thus far has often been largely empirical, requiring the synthesis and screening of a large number of analogues. In addition, the synthesis and development of degraders is often challenging, leading to lengthy optimisation campaigns to deliver candidate-quality compounds. This review highlights how the synthesis of degraders has evolved in recent years, in particular focusing on means of applying high-throughput chemistry and screening approaches to expedite these timelines, which we anticipate to be valuable in shaping the future of degrader optimisation campaigns.
Collapse
Affiliation(s)
- Rebecca Stevens
- Medicinal Chemistry, GSK, Stevenage, SG1 2NY, UK.
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XQ, UK
| | | | | | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XQ, UK
| | | | - Afjal H Miah
- Medicinal Chemistry, GSK, Stevenage, SG1 2NY, UK.
| |
Collapse
|
3
|
Zheng Z, Zeng Y, Lai K, Liao B, Li P, Tan CSH. Protein painting for structural and binding site analysis via intracellular lysine reactivity profiling with o-phthalaldehyde. Chem Sci 2024; 15:6064-6075. [PMID: 38665522 PMCID: PMC11040650 DOI: 10.1039/d4sc00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The three-dimensional structure and the molecular interaction of proteins determine their roles in many cellular processes. Chemical protein painting with protein mass spectrometry can identify changes in structural conformations and molecular interactions of proteins including their binding sites. Nevertheless, most current protein painting techniques identify protein targets and binding sites of drugs in vitro using a cell lysate or purified protein. Here, we tested 11 membrane-permeable lysine-reactive chemical probes for intracellular covalent labeling of endogenous proteins, which reveals ortho-phthalaldehyde (OPA) as the most reactive probe in the intracellular environment. An MS workflow and a new data analysis strategy termed RAPID (Reactive Amino acid Profiling by Inverse Detection) was developed to enhance detection sensitivity. RAPID with OPA successfully identified structural changes induced by the allosteric drug TEPP-46 on its target protein PKM2 and was applied to profile the conformation change of the proteome occurring in cells during thermal denaturation. The application of RAPID-OPA on cells treated with geldanamycin, selumetinib, and staurosporine successfully revealed their binding sites on target proteins. Thus, RAPID-OPA for cellular protein painting enables the identification of ligand-binding sites and detection of protein structural changes occurring in cells.
Collapse
Affiliation(s)
- Zhenxiang Zheng
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Ya Zeng
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong PR China
| | - Kunjia Lai
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Bin Liao
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Chris Soon Heng Tan
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| |
Collapse
|
4
|
Wang T, Ma S, Ji G, Wang G, Liu Y, Zhang L, Zhang Y, Lu H. A chemical proteomics approach for global mapping of functional lysines on cell surface of living cell. Nat Commun 2024; 15:2997. [PMID: 38589397 PMCID: PMC11001985 DOI: 10.1038/s41467-024-47033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Cell surface proteins are responsible for many crucial physiological roles, and they are also the major category of drug targets as the majority of therapeutics target membrane proteins on the surface of cells to alter cellular signaling. Despite its great significance, ligand discovery against membrane proteins has posed a great challenge mainly due to the special property of their natural habitat. Here, we design a new chemical proteomic probe OPA-S-S-alkyne that can efficiently and selectively target the lysines exposed on the cell surface and develop a chemical proteomics strategy for global analysis of surface functionality (GASF) in living cells. In total, we quantified 2639 cell surface lysines in Hela cell and several hundred residues with high reactivity were discovered, which represents the largest dataset of surface functional lysine sites to date. We discovered and validated that hyper-reactive lysine residues K382 on tyrosine kinase-like orphan receptor 2 (ROR2) and K285 on Endoglin (ENG/CD105) are at the protein interaction interface in co-crystal structures of protein complexes, emphasizing the broad potential functional consequences of cell surface lysines and GASF strategy is highly desirable for discovering new active and ligandable sites that can be functionally interrogated for drug discovery.
Collapse
Affiliation(s)
- Ting Wang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai, China
| | - Shiyun Ma
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai, China
| | - Guanghui Ji
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai, China
| | - Guoli Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Shanghai, China
| | - Yang Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Shanghai, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Shanghai, China
| | - Ying Zhang
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Shanghai, China.
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital and Department of Chemistry, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Shanghai, China.
| |
Collapse
|
5
|
Wang T, Wang Z, Wang R, Zhang L, Zhang Y, Lu H. Highly efficient and chemoselective blocking of free amino group by ortho-phthalaldehyde (OPA) for comprehensive analysis of protein terminome. Talanta 2024; 267:125262. [PMID: 37804787 DOI: 10.1016/j.talanta.2023.125262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Herein, we introduced ortho-phthalaldehyde (OPA) for blocking free amino groups and established a simple and robust method for comprehensive profiling of protein terminome based on strong cation exchange chromatography (SCX) fractionation. With the highly efficient and chemoseletive amine-group blocking, we identified 2271 canonical human protein N-termini, 1650 canonical human protein C-termini, as well as 645 protein neo-N-termini from HeLa cells.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhongjie Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Rui Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Ying Zhang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
7
|
Cheung CHP, Chong TH, Wei T, Liu H, Li X. Guanidine Additive Enabled Intermolecular ortho-Phthalaldehyde-Amine-Thiol Three-Component Reactions for Modular Constructions. Angew Chem Int Ed Engl 2023; 62:e202217150. [PMID: 36624047 DOI: 10.1002/anie.202217150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Recently, ortho-phthalaldehyde (OPA) is experiencing a renascence for the modification of proteins and peptides through OPA-amine two-component reactions for bioconjugation and intramolecular OPA-amine-thiol three-component reactions for cyclization. Historically, small thiol molecules were used in large excess to allow for the intermolecular OPA-amine-thiol reaction forming 1-thio-isoindole derivatives. In this study, we discovered that guanidine could serve as an effective additive to switch the intermolecular OPA-amine-thiol three-component reaction to a stoichiometric process and enable the modular construction of peptide-peptide, and peptide-drug conjugate structures. Thus, 12 model peptide-peptide conjugates have been synthesized from unprotected peptides featuring all proteinogenic residues. Besides, 6 peptide-drug conjugates have been prepared in one step, with excellent conversions and isolated yields. In addition, a conjugate product has been further functionalized by utilizing a premodified OPA derivative, demonstrating the versatility and flexibility of this reaction.
Collapse
Affiliation(s)
- Carina Hey Pui Cheung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Tin Hang Chong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| |
Collapse
|
8
|
Jiang H, Zhang Q, Zhang Y, Feng H, Jiang H, Pu F, Yu R, Zhong Z, Wang C, Fung YME, Blasco P, Li Y, Jiang T, Li X. Triazine-pyridine chemistry for protein labelling on tyrosine. Chem Commun (Camb) 2022; 58:7066-7069. [PMID: 35648412 DOI: 10.1039/d2cc01528e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discover the new reactivity of the 1,3,5-triazine moiety reacting with a phenol group and report the development of biocompatible and catalyst-free triazine-pyridine chemistry (TPC) for tyrosine labelling under physiological conditions and profiling in the whole proteome. TPC exhibited high tyrosine chemoselectivity in biological systems after cysteine blocking, displayed potential in tyrosine-guided protein labelling, and had bio-compatibility in live cells.
Collapse
Affiliation(s)
- Hongfei Jiang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Qing Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Huxin Feng
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Hao Jiang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Fan Pu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Rilei Yu
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Zheng Zhong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Chaoming Wang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Pilar Blasco
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Yongxin Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
9
|
Guo L, Zhou Y, Nie X, Zhang Z, Zhang Z, Li C, Wang T, Tang W. A platform for the rapid synthesis of proteolysis targeting chimeras (Rapid-TAC) under miniaturized conditions. Eur J Med Chem 2022; 236:114317. [PMID: 35397401 DOI: 10.1016/j.ejmech.2022.114317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
Proteolysis targeting chimera (PROTAC) is one of the most frequently used technologies for targeted protein degradation. PROTACs are composed of target protein ligand, E3 ligase ligand and a linker between them. Traditional methods for the development of PROTACs involve step-by-step synthesis and are time consuming. Herein, we report a platform for the rapid synthesis of PROTACs (Rapid-TAC) via a traceless coupling reaction between ortho-phthalaldehyde (OPA) motif on the ligand of targeting protein and an amine fucntional group on the commercially available partial PROTAC library that is composed of different E3 ligase ligands and various types and lengths of linkers. Under our optimized miniaturized conditions, the full PROTACs can be synthesized in a high throughput manner and the products can be directly used for screening without any further manipulations including purification. We demonstrated the utility of this platform by quickly identifying active degraders for androgen receptor (AR) and BRD4 with DC50 of 41.9 nM and 8.9 nM, respectively. It is expected that this Rapid-TAC platform can be easily extended to many other targets, thus lowering the barrier to access this novel modelity for small molecule drug discovery and faciliate structure activity relationship studies.
Collapse
Affiliation(s)
- Le Guo
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yaxian Zhou
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xueqing Nie
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhongrui Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhen Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chunrong Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Taobo Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
10
|
Cheung CHP, Chow HY, Li C, Blasco P, Chen K, Chen S, Li X. Synthesis of a daptomycin thiolactone analogue via the
MeDbz
‐linker‐based cyclative‐cleavage approach. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Hoi Yee Chow
- Department of Chemistry The University of Hong Kong Hong Kong China
| | - Can Li
- Department of Chemistry The University of Hong Kong Hong Kong China
| | - Pilar Blasco
- Department of Chemistry The University of Hong Kong Hong Kong China
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health The City University of Hong Kong Hong Kong China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health The City University of Hong Kong Hong Kong China
| | - Xuechen Li
- Department of Chemistry The University of Hong Kong Hong Kong China
| |
Collapse
|
11
|
Wang C, Zhao Y, Zhao J. Recent Advances in Chemical Protein Modification via Cysteine. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Bartlett ME, Shuler SA, Rose DJ, Gilbert LM, Hegab RA, Lawton TJ, Messersmith RE. Paintable proteins: biofunctional coatings via covalent incorporation of proteins into a polymer network. NEW J CHEM 2021. [DOI: 10.1039/d1nj04687j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attaching proteins to surfaces while maintaining bioactivity is a promising avenue for developing new functional materials.
Collapse
Affiliation(s)
- Mairead E. Bartlett
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Scott A. Shuler
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Daniel J. Rose
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Lindsey M. Gilbert
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Rachel A. Hegab
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Thomas J. Lawton
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Reid E. Messersmith
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| |
Collapse
|