1
|
Alniss HY, Kemp BM, Holmes E, Hoffmann J, Ploch RM, Ramadan WS, Msallam YA, Al-Jubeh HM, Madkour MM, Celikkaya BC, Scott FJ, El-Awady R, Parkinson JA. Spectroscopic, biochemical and computational studies of bioactive DNA minor groove binders targeting 5'-WGWWCW-3' motif. Bioorg Chem 2024; 148:107414. [PMID: 38733748 DOI: 10.1016/j.bioorg.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Bryony M Kemp
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Elizabeth Holmes
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Joanna Hoffmann
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Rafal M Ploch
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Moustafa M Madkour
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bekir C Celikkaya
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Fraser J Scott
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Raafat El-Awady
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - John A Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK.
| |
Collapse
|
2
|
Guo CC, Xu HE, Ma X. ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery. Acta Pharmacol Sin 2023; 44:2139-2150. [PMID: 37488425 PMCID: PMC10618457 DOI: 10.1038/s41401-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023] Open
Abstract
The AT-rich interaction domain (ARID) family of DNA-binding proteins is a group of transcription factors and chromatin regulators with a highly conserved ARID domain that recognizes specific AT-rich DNA sequences. Dysfunction of ARID family members has been implicated in various human diseases including cancers and intellectual disability. Among them, ARID3a has gained increasing attention due to its potential involvement in autoimmunity. In this article we provide an overview of the ARID family, focusing on the structure and biological functions of ARID3a. It explores the role of ARID3a in autoreactive B cells and its contribution to autoimmune diseases such as systemic lupus erythematosus and primary biliary cholangitis. Furthermore, we also discuss the potential for drug discovery targeting ARID3a and present a plan for future research in this field.
Collapse
Affiliation(s)
- Cheng-Cen Guo
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
3
|
Hinsberger M, Becker-Kettern J, Jürgens-Wemheuer WM, Oertel J, Schulz-Schaeffer WJ. Development of an Enzyme-Linked Immunosorbent Assay (ELISA) for the Quantification of ARID1A in Tissue Lysates. Cancers (Basel) 2023; 15:4096. [PMID: 37627124 PMCID: PMC10452747 DOI: 10.3390/cancers15164096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
ARID1A is a subunit of the mammalian SWI/SNF complex, which is thought to regulate gene expression through restructuring chromatin structures. Its gene ARID1A is frequently mutated and ARID1A levels are lowered in several human cancers, especially gynecologic ones. A functional ARID1A loss may have prognostic or predictive value in terms of therapeutic strategies but has not been proposed based on a quantitative method. Hardly any literature is available on ARID1A levels in tumor samples. We developed an indirect enzyme-linked immunosorbent assay (ELISA) for ARID1A based on the current EMA and FDA criteria. We demonstrated that our ELISA provides the objective, accurate, and precise quantification of ARID1A concentrations in recombinant protein solutions, cell culture standards, and tissue lysates of tumors. A standard curve analysis yielded a 'goodness of fit' of R2 = 0.99. Standards measured on several plates and days achieved an inter-assay accuracy of 90.26% and an inter-assay precision with a coefficient of variation of 4.53%. When tumor lysates were prepared and measured multiple times, our method had an inter-assay precision with a coefficient of variation of 11.78%. We believe that our suggested method ensures a high reproducibility and can be used for a high sample throughput to determine the ARID1A concentration in different tumor entities. The application of our ELISA on various tumor and control tissues will allow us to explore whether quantitative ARID1A measurements in tumor samples are of predictive value.
Collapse
Affiliation(s)
- Manuel Hinsberger
- Institute for Neuropathology, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany (J.B.-K.); (W.M.J.-W.)
| | - Julia Becker-Kettern
- Institute for Neuropathology, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany (J.B.-K.); (W.M.J.-W.)
| | - Wiebke M. Jürgens-Wemheuer
- Institute for Neuropathology, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany (J.B.-K.); (W.M.J.-W.)
| | - Joachim Oertel
- Department of Neurosurgery, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany;
| | - Walter J. Schulz-Schaeffer
- Institute for Neuropathology, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany (J.B.-K.); (W.M.J.-W.)
| |
Collapse
|
4
|
Giri M, Gupta P, Maulik A, Gracias M, Singh M. Structure and DNA binding analysis of AT-rich interaction domain present in human BAF-B specific subunit BAF250b. Protein Sci 2022; 31:e4294. [PMID: 35481652 PMCID: PMC8994505 DOI: 10.1002/pro.4294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022]
Abstract
BAF250b and its paralog BAF250a are the DNA-binding central hub proteins present in BAF-B and BAF-A classes of SWI/SNF chromatin-remodeling complexes. BAF250b contains an AT-rich interaction domain (ARID) and C-terminal BAF250_C domain, and it is found mutated in several cancers. ARID is a conserved helix-turn-helix motif-containing DNA-binding domain present in several eukaryotic proteins. The ARID of BAF250b has been proposed to play roles in recruiting SWI/SNF to the target gene promoters for their activation. BAF250b ARID structures had been deposited in the protein data bank by a structural genomics consortium. However, it is not well-studied for its DNA-binding and solution dynamic properties. Here, we report complete backbone NMR resonance assignments of human BAF250b ARID. NMR chemical shifts and the backbone dynamics showed that the solution structure of the protein matched the reported crystal structures. The structure and chemical shift indexing revealed the presence of a short β-sheet in the DNA-binding region of BAF250b ARID that was absent in the structure of its paralog BAF250a ARID. NMR chemical shift perturbations identified DNA-binding residues and revealed the DNA-binding interface on BAF250b ARID. NMR data-driven HADDOCK models of BAF250b ARID - DNA complexes revealed its plausible mode of DNA-binding. Isothermal titration calorimetry experiments showed that BAF250b ARID interacts with DNA sequences with moderate affinities like BAF250a ARID. However, distinct thermodynamic signatures were observed for binding of BAF250a ARID and BAF250b ARID to AT-rich DNA sequence, suggesting that subtle sequence and structural differences in these two proteins influence their DNA-binding.
Collapse
Affiliation(s)
- Malyasree Giri
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| | - Parul Gupta
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| | - Aditi Maulik
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| | - Magaly Gracias
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| | - Mahavir Singh
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| |
Collapse
|
5
|
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021; 34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.
Collapse
Affiliation(s)
- Robert J Falconer
- School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, South Australia, Australia
| | - Boelo Schuur
- Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
6
|
Lee S, Kim J, Han S, Park CJ. Recognition and Unfolding of c-MYC and Telomeric G-Quadruplex DNAs by the RecQ C-Terminal Domain of Human Bloom Syndrome Helicase. ACS OMEGA 2020; 5:14513-14522. [PMID: 32596589 PMCID: PMC7315595 DOI: 10.1021/acsomega.0c01176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/02/2020] [Indexed: 05/16/2023]
Abstract
G-quadruplex (G4) is a noncanonical DNA secondary structure formed by Hoogsteen base pairing. It is recognized by various DNA helicases involved in DNA metabolism processes such as replication and transcription. Human Bloom syndrome protein (BLM), one of five human RecQ helicases, is a G4 helicase. While several studies revealed the mechanism of G4 binding and unfolding by the conserved RecQ C-terminal (RQC) domain of BLM, how RQC recognizes different G4 topologies is still unclear. Here, we investigated the interaction of Myc-22(14/23T) G4 from the c-Myc promoter and hTelo G4 from the telomeric sequence with RQC. Myc-22(14/23T) and hTelo form parallel and (3+1) hybrid topologies, respectively. Our circular dichroism (CD) spectroscopy data indicate that RQC can partially unfold the parallel G4, even with a short 3' overhang, while it can only partially unfold the (3+1) hybrid G4 with a 3' overhang of 6 nucleotides or longer. We found that the intrinsic thermal stability of G4 does not determine RQC-induced G4 unfolding by comparing T m of G4s. We also showed that both parallel and (3+1) hybrid G4s bind to the β-wing region of RQC. Thermodynamic analysis using isothermal titration calorimetry (ITC) showed that all interactions were endothermic and entropically driven. We suggest that RQC partially unfolds the parallel G4 more efficiently than the (3+1) hybrid G4 and binds to various G4 structures using its β-wing region. By this information, our research provides new insights into the influence of G4 structure on DNA metabolic processes involving BLM.
Collapse
|