1
|
Fang H, Wang M, Wei P, Liu Q, Su Y, Liu H, Chen Y, Su Z, He W. Molecular probes for super-resolution imaging of drug dynamics. Adv Drug Deliv Rev 2024; 210:115330. [PMID: 38735627 DOI: 10.1016/j.addr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
Collapse
Affiliation(s)
- Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
| | - Pengfan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Zhu FY, Mei LJ, Tian R, Li C, Wang YL, Xiang SL, Zhu MQ, Tang BZ. Recent advances in super-resolution optical imaging based on aggregation-induced emission. Chem Soc Rev 2024; 53:3350-3383. [PMID: 38406832 DOI: 10.1039/d3cs00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Super-resolution imaging has rapidly emerged as an optical microscopy technique, offering advantages of high optical resolution over the past two decades; achieving improved imaging resolution requires significant efforts in developing super-resolution imaging agents characterized by high brightness, high contrast and high sensitivity to fluorescence switching. Apart from technical requirements in optical systems and algorithms, super-resolution imaging relies on fluorescent dyes with special photophysical or photochemical properties. The concept of aggregation-induced emission (AIE) was proposed in 2001, coinciding with unprecedented advancements and innovations in super-resolution imaging technology. AIE probes offer many advantages, including high brightness in the aggregated state, low background signal, a larger Stokes shift, ultra-high photostability, and excellent biocompatibility, making them highly promising for applications in super-resolution imaging. In this review, we summarize the progress in implementation methods and provide insights into the mechanism of AIE-based super-resolution imaging, including fluorescence switching resulting from photochemically-converted aggregation-induced emission, electrostatically controlled aggregation-induced emission and specific binding-regulated aggregation-induced emission. Particularly, the aggregation-induced emission principle has been proposed to achieve spontaneous fluorescence switching, expanding the selection and application scenarios of super-resolution imaging probes. By combining the aggregation-induced emission principle and specific molecular design, we offer some comprehensive insights to facilitate the applications of AIEgens (AIE-active molecules) in super-resolution imaging.
Collapse
Affiliation(s)
- Feng-Yu Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Li-Jun Mei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Shi-Li Xiang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
3
|
Samanta S, Lai K, Wu F, Liu Y, Cai S, Yang X, Qu J, Yang Z. Xanthene, cyanine, oxazine and BODIPY: the four pillars of the fluorophore empire for super-resolution bioimaging. Chem Soc Rev 2023; 52:7197-7261. [PMID: 37743716 DOI: 10.1039/d2cs00905f] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the realm of biological research, the invention of super-resolution microscopy (SRM) has enabled the visualization of ultrafine sub-cellular structures and their functions in live cells at the nano-scale level, beyond the diffraction limit, which has opened up a new window for advanced biomedical studies to unravel the complex unknown details of physiological disorders at the sub-cellular level with unprecedented resolution and clarity. However, most of the SRM techniques are highly reliant on the personalized special photophysical features of the fluorophores. In recent times, there has been an unprecedented surge in the development of robust new fluorophore systems with personalized features for various super-resolution imaging techniques. To date, xanthene, cyanine, oxazine and BODIPY cores have been authoritatively utilized as the basic fluorophore units in most of the small-molecule-based organic fluorescent probe designing strategies for SRM owing to their excellent photophysical characteristics and easy synthetic acquiescence. Since the future of next-generation SRM studies will be decided by the availability of advanced fluorescent probes and these four fluorescent building blocks will play an important role in progressive new fluorophore design, there is an urgent need to review the recent advancements in designing fluorophores for different SRM methods based on these fluorescent dye cores. This review article not only includes a comprehensive discussion about the recent developments in designing fluorescent probes for various SRM techniques based on these four important fluorophore building blocks with special emphasis on their effective integration into live cell super-resolution bio-imaging applications but also critically evaluates the background of each of the fluorescent dye cores to highlight their merits and demerits towards developing newer fluorescent probes for SRM.
Collapse
Affiliation(s)
- Soham Samanta
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Kaitao Lai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Feihu Wu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yingchao Liu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Songtao Cai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xusan Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhigang Yang
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Nguyen AT, Kim HK. Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors. Pharmaceutics 2023; 15:1840. [PMID: 37514026 PMCID: PMC10385036 DOI: 10.3390/pharmaceutics15071840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hypoxia, a deficiency in the levels of oxygen, is a common feature of most solid tumors and induces many characteristics of cancer. Hypoxia is associated with metastases and strong resistance to radio- and chemotherapy, and can decrease the accuracy of cancer prognosis. Non-invasive imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using hypoxia-targeting radiopharmaceuticals have been used for the detection and therapy of tumor hypoxia. Nitroimidazoles are bioreducible moieties that can be selectively reduced under hypoxic conditions covalently bind to intracellular macromolecules, and are trapped within hypoxic cells and tissues. Recently, there has been a strong motivation to develop PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazole moieties for the visualization and treatment of hypoxic tumors. In this review, we summarize the development of some novel PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazoles, as well as their physicochemical properties, in vitro cellular uptake values, in vivo biodistribution, and PET/SPECT imaging results.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
5
|
Dai J, Wu Z, Li D, Peng G, Liu G, Zhou R, Wang C, Yan X, Liu F, Sun P, Zhou J, Lu G. Super-resolution dynamic tracking of cellular lipid droplets employing with a photostable deep red fluorogenic probe. Biosens Bioelectron 2023; 229:115243. [PMID: 36989580 DOI: 10.1016/j.bios.2023.115243] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Lipid droplets (LDs) are critical organelles involved in many physiological processes in eukaryotic cells. To visualize and study LDs, particular the small/nascent LDs, the emerging super-resolution fluorescence imaging techniques with nanoscale resolution would be much more powerful in comparison to the conventional confocal/wide-field imaging techniques. However, directly limited by the availability of advanced LDs probes, super-resolution fluorescence imaging of LDs is a practically challenging task. In this context, a superior LDs fluorescent probe named Lipi-Deep Red is newly developed for structured illumination microscopy (SIM) super-resolution imaging. This fluorescent probe features with the advantages of strong deep red/NIR emission, fluorogenic character, high LDs specificity, and outstanding photostability. These advantages enable the fluorescent probe to be finely applied in SIM super-resolution imaging, e.g. time-lapse imaging (up to 1000 frames) to monitor the LDs dynamics at nanoscale (159 nm), two-color time-lapse imaging to discover the nearby contact/interaction between LDs and mitochondria. Consequently, the fusion processes of LDs are impressively visualized at a high spatial and temporal resolution. Two kinds of contact models between LDs and mitochondria (dynamic contact and stable contact) newly proposed in the recent literatures are successfully revealed.
Collapse
|
6
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
7
|
Zhai R, Fang B, Lai Y, Peng B, Bai H, Liu X, Li L, Huang W. Small-molecule fluorogenic probes for mitochondrial nanoscale imaging. Chem Soc Rev 2023; 52:942-972. [PMID: 36514947 DOI: 10.1039/d2cs00562j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are inextricably linked to the development of diseases and cell metabolism disorders. Super-resolution imaging (SRI) is crucial in enhancing our understanding of mitochondrial ultrafine structures and functions. In addition to high-precision instruments, super-resolution microscopy relies heavily on fluorescent materials with unique photophysical properties. Small-molecule fluorogenic probes (SMFPs) have excellent properties that make them ideal for mitochondrial SRI. This paper summarizes recent advances in the field of SMFPs, with a focus on the chemical and spectroscopic properties required for mitochondrial SRI. Finally, we discuss future challenges in this field, including the design principles of SMFPs and nanoscopic techniques.
Collapse
Affiliation(s)
- Rongxiu Zhai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaqi Lai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
8
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
|
10
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
11
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
12
|
Xu R, Dang D, Wang Z, Zhou Y, Xu Y, Zhao Y, Wang X, Yang Z, Meng L. Facilely prepared aggregation-induced emission (AIE) nanocrystals with deep-red emission for super-resolution imaging. Chem Sci 2022; 13:1270-1280. [PMID: 35222910 PMCID: PMC8809421 DOI: 10.1039/d1sc04254h] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Organic nanocrystals (NCs) with high brightness are highly desirable for biological imaging. However, the preparation of NCs by a facile and fast method is still challenging. Herein, an aggregation-induced emission (AIE) luminogen of 4,4'-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (DTPA-BT-F) in the deep-red region is designed with intensive crystalline features to obtain NCs by kinetically controlled nanoprecipitation. The prepared AIE NCs with high brightness and good photo-stability are then applied in super-resolution imaging via stimulated emission depletion (STED) nanoscopy. As observed, the nanostructures in lysosomes of both fixed and live cells are well visualized with superior lateral resolutions under STED nanoscopy (full width at half maximum values, 107 and 108 nm) in contrast to that in confocal imaging (548 and 740 nm). More importantly, dynamic monitoring and long-term tracking of lysosomal movements in live HeLa cells, such as lysosomal contact, can also be carried out by using DTPA-BT-F NCs at a superior resolution. To the best of our knowledge, this is the first case of AIE NCs prepared by nanoprecipitation for STED nanoscopy, thus providing a new strategy to develop high performance imaging agents for super-resolution imaging.
Collapse
Affiliation(s)
- Ruohan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Dongfeng Dang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Zhi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yu Zhou
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yanzi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yizhen Zhao
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Xiaochi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Zhiwei Yang
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
13
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
14
|
Liu G, Peng G, Dai J, Zhou R, Wang C, Yan X, Jia X, Liu X, Gao Y, Wang L, Lu G. STED Nanoscopy Imaging of Cellular Lipid Droplets Employing a Superior Organic Fluorescent Probe. Anal Chem 2021; 93:14784-14791. [PMID: 34704744 DOI: 10.1021/acs.analchem.1c03474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipid droplets (LDs) are spherical organelles that participate in numerous biological processes. In order to visualize LDs on the nanoscale, nanoscopy fluorescence imaging is considered as the most attractive technique but is substantially limited by the characteristics of fluorescent probes. Thus, the development of a superior fluorescent probe that is capable of nanoscopy fluorescence imaging has attracted enormous attention. Herein, a benzodithiophene-tetraoxide-based molecule Lipi-BDTO has been developed that can easily undergo the stimulated emission depletion (STED) process and displays high photostability. These two characteristics of fluorescent probes finely satisfy the requirements of STED nanoscopy imaging. Indeed, applying the probe for STED imaging achieves a high resolution of 65 nm, belonging to one of the leading results of LDs fluorescence imaging. Furthermore, the high photostability of this fluorescent probe enables it to monitor the dynamics of LDs by time-lapse STED imaging as well as to visualize the three-dimensional (3D) spatial distribution of LDs by 3D STED imaging. Notably, the resolution of the 3D STED image represents one of the best LDs fluorescence imaging results so far. Besides STED nanoscopy imaging, the superior utility of this fluorescent probe has been also demonstrated in two-color 3D confocal imaging and four-color confocal imaging.
Collapse
Affiliation(s)
- Guannan Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Guishan Peng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yuan Gao
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China.,State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
15
|
Dai X, Ma J, Zhang Q, Xu Q, Yang L, Gao F. Simultaneous inhibition of planktonic and biofilm bacteria by self-adapting semiconducting polymer dots. J Mater Chem B 2021; 9:6658-6667. [PMID: 34378630 DOI: 10.1039/d1tb01070k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biofilm infections present an enormous challenge in today's healthcare settings. Currently, pH-switchable antibacterial agents are being developed to eradicate biofilms. However, most pH-switchable antibacterial agents are less lethal to planktonic bacteria under neutral conditions, and cannot prevent the dispersed bacteria from seeding acute infection again. Herein, this work reports the applications of semiconducting polymer dots (Pdots) with a double adhesion mechanism in imaging and inhibiting bacteria inside (weak acidic conditions) and outside (neutral conditions) biofilms. Clew-like Pdots were prepared by covalently linking phenylboronic acid (PBA) and pH-responsive naphthalimide (NA) ramification in semiconducting polymers. Under neutral conditions, the Pdots combined with bacteria through the formation of boronate esters between PBA and diols. Under weakly acidic conditions, the partial borate bond fractured, and the Pdots adhered onto the bacterial surface through the positively charged NA in Pdots. Furthermore, the Pdots display negligible toxicity to mammalian cells and tissues. More importantly, the Pdots can selectively damage the bacterial membrane and inhibit bacteria in vivo. This work highlights the feasibility of using semiconducting Pdots to image and inhibit bacteria inside and outside biofilms, which represents a highly effective strategy to cope with biofilm infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Liu J, Fang X, Liu Z, Li R, Yang Y, Sun Y, Zhao Z, Wu C. Expansion Microscopy with Multifunctional Polymer Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007854. [PMID: 33988880 DOI: 10.1002/adma.202007854] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Expansion microscopy (ExM) provides nanoscale resolution on conventional microscopes via physically enlarging specimens with swellable polyelectrolyte gels. However, challenges involving fluorophore degradation and dilution during sample expansion have yet to be overcome. Herein, sequential cellular targeting, gel anchoring, and high-fidelity fluorescence reported using multifunctional polymer dots (Pdots) designed for ExM applications are demonstrated. The impressive brightness of the Pdots facilitates multicolor ExM, thereby enabling visualization of a variety of subcellular structures and neuron synapses. The average fluorescence intensities of Pdots in ExM range from ≈3 to 6 times higher than those achieved using commercially available Alexa dyes. Moreover, the fluorescence brightness and optical fluctuation are significantly improved by a surfactant-containing expansion buffer, which enables further resolution enhancement via super-resolution optical fluctuation imaging (SOFI). The combination of ExM and SOFI allows subcellular structures of ≈30 nm to be resolved by conventional microscopes. These results highlight the immense potential of multifunctional Pdots for ExM-enhanced super-resolution imaging.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Rongqin Li
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yicheng Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
17
|
Thompson S, Pappas D. Protein-, polymer-, and silica-based luminescent nanomaterial probes for super resolution microscopy: a review. NANOSCALE ADVANCES 2021; 3:1853-1864. [PMID: 34381961 PMCID: PMC8323812 DOI: 10.1039/d0na00971g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 06/13/2023]
Abstract
Super resolution microscopy was developed to overcome the Abbe diffraction limit, which effects conventional optical microscopy, in order to study the smaller components of biological systems. In recent years nanomaterials have been explored as luminescent probes for super resolution microscopy, as many have advantages over traditional fluorescent dye molecules. This review will summarize several different types of nanomaterial probes, covering quantum dots, carbon dots, and dye doped nanoparticles. For the purposes of this review the term "nanoparticle" will be limited to polymer-based, protein-based, and silica-based nanoparticles, including core-shell structured nanoparticles. Luminescent nanomaterials have shown promise as super-resolution probes, and continued research in this area will yield new advances in both materials science and biochemical microscopy at the nanometer scale.
Collapse
Affiliation(s)
- S Thompson
- Department of Chemistry and Biochemistry, Texas Tech University USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University USA
| |
Collapse
|
18
|
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Tho D. K. Nguyen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Pieter E. Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
- ParaMedir B.V., 1e Energieweg 13, 9301 LK Roden, The Netherlands
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
19
|
Xin Z, Zhang C, Sun L, Wan C, Chen T, Chen H, Wang M, Wang Y, Zhu S, Yuan X. High-performance imaging of cell-substrate contacts using refractive index quantification microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:7096-7108. [PMID: 33408982 PMCID: PMC7747918 DOI: 10.1364/boe.409764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Non-invasive imaging of living cells is an advanced technique that is widely used in the life sciences and medical research. We demonstrate a refractive index quantification microscopy (RIQM) that enables label-free studies of glioma cell-substrate contacts involving cell adhesion molecules and the extracellular matrix. This microscopy takes advantage of the smallest available spot created when an azimuthally polarized perfect optical vortex beam (POV) is tightly focused with a first-order spiral phase, which results in a relatively high imaging resolution among biosensors. A high refractive index (RI) resolution enables the RI distribution within neuronal cells to be monitored. The microscopy shows excellent capability for recognizing cellular structures and activities, demonstrating great potential in biological sensing and live-cell kinetic imaging.
Collapse
Affiliation(s)
- Ziqiang Xin
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chonglei Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Lixun Sun
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Wan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Ting Chen
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Houkai Chen
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Min Wang
- Photonics Center, Shenzhen University, Shenzhen, 518060, China
| | - Yijia Wang
- Institute of Oncology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Siwei Zhu
- Institute of Oncology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
20
|
Wu Y, Ruan H, Dong Z, Zhao R, Yu J, Tang X, Kou X, Zhang X, Wu M, Luo F, Yuan J, Fang X. Fluorescent Polymer Dot-Based Multicolor Stimulated Emission Depletion Nanoscopy with a Single Laser Beam Pair for Cellular Tracking. Anal Chem 2020; 92:12088-12096. [PMID: 32867488 DOI: 10.1021/acs.analchem.0c02821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimulated emission depletion (STED) nanoscopy provides subdiffraction resolution while preserving the benefits of fluorescence confocal microscopy in live-cell imaging. However, there are several challenges for multicolor STED nanoscopy, including sophisticated microscopy architectures, fast photobleaching, and cross talk of fluorescent probes. Here, we introduce two types of nanoscale fluorescent semiconducting polymer dots (Pdots) with different emission wavelengths: CNPPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylene-1,4-phenylene)]) Pdots and PDFDP (poly[{9,9-dihexyl-2,7-bis(1-cyanovinylene)fluorene}-alt-co-{2,5-bis (N,N'-diphenylamino)-1,4-phenylene}]) Pdots, for dual-color STED bioimaging and cellular tracking. Besides bright fluorescence, strong photostability, and easy bioconjugation, these Pdots have large Stokes shifts, which make it possible to share both excitation and depletion beams, thus requiring only a single pair of laser beams for the dual-color STED imaging. Long-term tracking of cellular organelles by the Pdots has been achieved in living cells, and the dynamic interaction of endosomes derived from clathrin-mediated and caveolae-mediated endocytic pathways has been monitored for the first time to propose their interaction models. These results demonstrate the promise of Pdots as excellent probes for live-cell multicolor STED nanoscopy.
Collapse
Affiliation(s)
- Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hefei Ruan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Yu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaojun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Manchen Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|