1
|
Tiwari S, Koti Ainavarapu SR. Platinum Stabilises a Molten-Globule Conformation of a Small Globular Cytosolic Protein SUMO1. Chem Asian J 2025; 20:e202400971. [PMID: 39417787 PMCID: PMC11741158 DOI: 10.1002/asia.202400971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Proteins are generally resistant to large conformational changes under physiological conditions. Here, we show that platinum (Pt(II)), which is widely-used metal centre in cancer therapeutic drugs, binds to a cytosolic protein, small ubiquitin-like modifier 1 (SUMO1), under physiological conditions and changes its conformation to a molten globule (MG). Mass spectrometry (ICP-MS) studies confirmed stoichiometric Pt(II) binding to SUMO1. Fluorescence spectroscopy showed Tyr fluorescence quenching and increased ANS binding. Fluorescence assays on Trp-mutants indicated conformational changes and circular dichroism (CD) suggested MG formation upon Pt(II) binding. In contrast, structural homologues of SUMO1 (ubiquitin (Ubq) and SUMO2) showed no conformational changes on Pt(II) titration. Further studies compared the impact of distinct His residues in SUMO1 on Pt(II) binding and protein structure to SUMO2 and Ubq. Experiments at low pH (5.0) implicated His residues interacting with Pt(II), corroborated by the absence of conformational change in the H75L mutant of SUMO1. Pt(II)-His binding in SUMO1 unravels key molecular determinants of Pt(II)-protein interactions and their conformational consequences. SUMO1 with other SUMOylation components are shown to have enhanced expression in several cancers, hence, our study suggests a possible fate of the non-targetability of Pt(II)-based drugs on SUMOylation in cancer cells, upon interaction with SUMO1.
Collapse
Affiliation(s)
- Suman Tiwari
- Department of Chemical SciencesTata Institute of Fundamental ResearchDr Homi Bhabha Road, ColabaMumbai400005India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical SciencesTata Institute of Fundamental ResearchDr Homi Bhabha Road, ColabaMumbai400005India
| |
Collapse
|
2
|
Lanoë PH, Philouze C, Molton F, Vanthuyne N, Kundu D, Delporte-Pebay M, Crassous J, Latouche C, Loiseau F. Phosphorescent Chiral Cationic Binuclear Iridium(III) Complexes: Boosting the Circularly Polarized Luminescence Brightness. Inorg Chem 2024. [PMID: 39686711 DOI: 10.1021/acs.inorgchem.4c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We report the synthesis and characterization of two chiral binuclear iridium(III) complexes (ΛΛ and ΔΔ) prepared from enantiopure building blocks [μ-Cl2(Δ-Ir(C^N)2)2] and [μ-Cl2(Λ-Ir(C^N)2)2]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex Irpiv (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer (IrL1) and a dimer (Ir2L2, mixture). All the complexes exhibit similar emission properties, emitting in the orange-red region of the spectra with a good photoluminescence quantum yield (λmax = 610-625 nm, Φ ∼ 25%, τ ∼ 800-900 ns). However, the ΛΛ and ΔΔ complexes are optically active, indicating that no isomerization occurred during the different synthetic steps, as evidenced by both the circular dichroism spectra and their circularly polarized luminescence (CPL). The capital gain of the dimers (Ir2L2, ΛΛ, and ΔΔ) is a 4-fold brightness (B380 = ε380 nm × Φ) compared to the monomer (IrL1) and the CPL brightness (BCPL = B380 × glum/2) of the binuclear complexes being among the highest reported to date for chiral iridium(III) complexes.
Collapse
Affiliation(s)
| | | | | | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, FSCM, Chiropole, Marseille 13397, France
| | - Debsouri Kundu
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, Rennes F-35000, France
| | | | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, Rennes F-35000, France
| | - Camille Latouche
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | | |
Collapse
|
3
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
4
|
Li Z, Ekanayake AB, Bartman AE, Doorn JA, Tivanski AV, Pigge FC. Detection and disaggregation of amyloid fibrils by luminescent amphiphilic platinum(II) complexes. Dalton Trans 2024; 53:9001-9010. [PMID: 38726661 DOI: 10.1039/d4dt00882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cyclometallated Pt(II) complexes possessing hydrophobic 2-phenylpyridine (ppy) ligands and hydrophilic acetonylacetone (acac) ligands have been investigated for their ability to detect amyloid fibrils via luminescence response. Using hen egg-white lysozyme (HEWL) as a model amyloid protein, Pt(II) complexes featuring benzanilide-substituted ppy ligands and ethylene glycol-functionalized acac ligands demonstrated enhanced luminescence in the presence of HEWL fibrils, whereas Pt(II) complexes lacking complementary hydrophobic/hydrophilic ligand sets displayed little to no emission enhancement. An amphiphilic Pt(II) complex incorporating a bis(ethylene glycol)-derivatized acac ligand was additionally found to trigger restructuring of HEWL fibrils into smaller spherical aggregates. Amphiphilic Pt(II) complexes were generally non-toxic to SH-SY5Y neuroblastoma cells, and several complexes also exhibited enhanced luminescence in the presence of Aβ42 fibrils associated with Alzheimer's disease. This study demonstrates that easily prepared and robust (ppy)PtII(acac) complexes show promising reactivity toward amyloid fibrils and represent attractive molecular scaffolds for design of small-molecule probes targeting amyloid assemblies.
Collapse
Affiliation(s)
- Zhuoheng Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | - Anna E Bartman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
5
|
Synthesis, characterization and photophysical properties of mixed ligand cyclometalated platinum(II) complexes containing 2-phenylpyridine and pyridine carboxylic acids. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Top Curr Chem (Cham) 2022; 380:31. [PMID: 35715540 DOI: 10.1007/s41061-022-00386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Near-infrared (NIR, 700-1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.
Collapse
|
7
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
8
|
A peptide-AIEgen nanocomposite mediated whole cancer immunity cycle-cascade amplification for improved immunotherapy of tumor. Biomaterials 2022; 285:121528. [DOI: 10.1016/j.biomaterials.2022.121528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
|
9
|
Martìnez-Vollbert E, Ciambrone C, Lafargue-Dit-Hauret W, Latouche C, Loiseau F, Lanoë PH. Bis-Heteroleptic Cationic Iridium(III) Complexes Featuring Cyclometalating 2-Phenylbenzimidazole Ligands: A Combined Experimental and Theoretical Study. Inorg Chem 2022; 61:3033-3049. [PMID: 35143722 DOI: 10.1021/acs.inorgchem.1c02968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, we investigate a new family of cationic iridium(III) complexes featuring the cyclometalating ligand 2-phenylbenzimidazole and ancillary ligand 4,4'-dimethyl-2,2'-bipyridine. Our benchmark complex IrL12 (L1 = 2-phenylbenzimidazole) displays emission properties similar to those of the archetypical complex 2,2'-dipyridylbis(2',4'-phenylpyridine)iridium(III) in deaerated CH3CN (Φ = 0.20, λem = 584 nm and Φ = 0.14, λem = 585 nm, respectively) but exhibits a higher photoluminescence quantum yield in deaerated CH2Cl2 (Φ = 0.32, λem = 566 nm and Φ = 0.20, λem = 595 nm, respectively) and especially a lower nonradiative constant (knr = 6.6 × 105 s-1 vs knr = 1.4 × 106 s-1, respectively). As a primary investigation, we explored the influence of the introduction of electron-donating and electron-withdrawing groups on the benzimidazole moiety and the synergetic effect of the substitution of the cyclometalating phenyl moiety at the para position with the same substituents. The emission energy displays very good correlation with the Hammett constants of the introduced substituents as well as with ΔEredox values, which allow us to ascribe the phosphorescence of these series to emanate mainly from a mixed metal/ligand to ligand charge transfer triplet excited state (3M/LLCT*). Two complexes (IrL52 and IrL82) display a switch of the lowest triplet excited state from 3M/LLCT* to ligand centered (3LC*), from the less polar CH2Cl2 to the more polar CH3CN. The observed results are supported by (TD)-DFT computations considering the vibrational contributions to the electronic transitions. Chromaticity diagrams based on the maximum emission wavelength of the recorded and simulated phosphorescence spectra demonstrate the strong promise of our complexes as emitting materials, together with the very good agreement between experimental and theoretical results.
Collapse
Affiliation(s)
| | | | | | - Camille Latouche
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | | | | |
Collapse
|
10
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
11
|
Wang P, Wang JW, Zhang WH, Bai H, Tang G, Young DJ. In Vitro Anticancer Activity of Nanoformulated Mono- and Di-nuclear Pt Compounds. Chem Asian J 2021; 16:2993-3000. [PMID: 34387027 DOI: 10.1002/asia.202100901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Nanoformulations of mononuclear Pt complexes cis-PtCl2 (PPh3 )2 (1), [Pt(PPh3 )2 (L-Cys)] ⋅ H2 O (3, L-Cys=L-cysteinate), trans-PtCl2 (PPh2 PhNMe2 )2 (4; PPh2 PhNMe2 =4-(dimethylamine)triphenylphosphine), trans-PtI2 (PPh2 PhNMe2 )2 (5) and dinuclear Pt cluster Pt2 (μ-S)2 (PPh3 )4 (2) have comparable cytotoxicity to cisplatin against murine melanoma cell line B16F10. Masking of these discrete molecular entities within the hydrophobic core of Pluronic® F-127 significantly boosted their solubility and stability, ensuring efficient cellular uptake, giving in vitro IC50 values in the range of 0.87-11.23 μM. These results highlight the potential therapeutic value of Pt complexes featuring stable Pt-P bonds in nanocomposite formulations with biocompatible amphiphilic polymers.
Collapse
Affiliation(s)
- Pan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Wei Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - David J Young
- College of Engineering Information Technology & Environment, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|