1
|
Zhang Q, Hu J, Li DL, Qiu JG, Jiang BH, Zhang CY. Construction of single-molecule counting-based biosensors for DNA-modifying enzymes: A review. Anal Chim Acta 2024; 1298:342395. [PMID: 38462345 DOI: 10.1016/j.aca.2024.342395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers. DNA-modifying enzymes have emerged as the potential biomarkers in early diagnosis of diseases and new therapeutic targets in genomic research. Consequently, the development of highly specific and sensitive biosensors for the detection of DNA-modifying enzymes is of great importance for basic biomedical research, disease diagnosis, and drug discovery. Single-molecule fluorescence detection has been widely implemented in the field of molecular diagnosis due to its simplicity, high sensitivity, visualization capability, and low sample consumption. In this paper, we summarize the recent advances in single-molecule counting-based biosensors for DNA-modifying enzyme (i.e, alkaline phosphatase, DNA methyltransferase, DNA glycosylase, flap endonuclease 1, and telomerase) assays in the past four years (2019 - 2023). We highlight the principles and applications of these biosensors, and give new insight into the future challenges and perspectives in the development of single-molecule counting-based biosensors.
Collapse
Affiliation(s)
- Qian Zhang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Liu R, Wang Y, Chai H, Miao P. Ultrasensitive electrochemical detection and inhibition evaluation of DNA methyltransferase based on cascade strand displacement amplification. Analyst 2023; 149:59-62. [PMID: 37997779 DOI: 10.1039/d3an01780j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
An electrochemical sensing approach for ultrasensitive DNA methyltransferase (MTase) activity assay is proposed. After specific cleavage reaction in the presence of a methylated state, strand displacement polymerization (SDP) is initiated in the solution. The product of upstream SDP further triggers downstream SDP, which enriches abundant electrochemical species at the electrode. The whole process is quite convenient with shared enzymes. Due to the cascade signal amplification, ultrahigh sensitivity is promised. Inhibitor screening results are also demonstrated to be good. Besides, target MTase can be accurately determined in human serum samples, confirming excellent practical utility. This work provides a reliable approach for the analysis of MTase activity, which is of vital importance for related biological studies and clinical applications.
Collapse
Affiliation(s)
- Ruizhi Liu
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuge Wang
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
- Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250103, China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
- Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai 264200, China
| |
Collapse
|
3
|
Cao G, Jia H, Xu S, Xu E, Wang P, Xue Q, Wang H. Tetrahedral DNA nanostructure-corbelled click chemistry-based large-scale assembly of nanozymes for ratiometric fluorescence assay of DNA methyltransferase activity. J Mater Chem B 2023; 11:9912-9921. [PMID: 37850305 DOI: 10.1039/d3tb01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Ligation efficiency in a surface-based DNA click chemistry (CuAAC) reaction is extremely restricted by the orientation and density of probes arranged on a heterogeneous surface. Herein, we engineer DNA tetrahedral nanostructure (DTN)-corbelled click chemistry to trigger a hybridization chain reaction (HCR) assembling a large-scale of nanozymes for ratiometric fluorescence detection of DNA adenine methyltransferase (Dam). In this study, a DNA tetrahedron structure with an alkynyl modifying pendant DNA probe (Alk-DTN) is designed and assembled on a magnetic bead (MB) as a scaffold for click chemistry. When a CuO NP-encoded magnetic nanoparticle (CuO-MNP) substrate was methylated by Dam, CuO NPs were released and turned into a mass of Cu+. The Cu+ droves azido modifying lDNA (azide-lDNA) to connect with the Alk-DTN probe on the MB through the click reaction, forming an intact primer to initiate the HCR. The HCR product, a rigid structure double-stranded DNA, periodically assembles glucose oxidase mimicking gold nanoparticles (GNPs) into a large-scale of nanozymes for catalyzing the oxidation of glucose to H2O2. NH2-MIL-101 MOFs, a fluorescent indicator and a biomimetic catalyst, activated the product H2O2 to oxidize o-phenylenediamine (oPD) into visually detectable 2,3-diaminophenazine (DAP). The change of the signal ratio between DAP and NH2-MIL-101 is proportional to the methylation event corresponding to the MTase activity. In this study, the DTN enhances the efficiency of the surface-based DNA click reaction and maintains the catalytic activities of gold nanoparticle nanozymes due to the intrinsic nature of mechanical rigidity and well-controlled orientation and well-adjusted size. Large-scale assembly of nanozymes circumvents the loss of natural enzyme activity caused by chemical modification and greatly improves the amplification efficiency. The proposed biosensor displayed a low detection limit of 0.001 U mL-1 for Dam MTase due to multiple amplification and was effective in real samples and methylation inhibitor screening, providing a promising modular platform for bioanalysis.
Collapse
Affiliation(s)
- Guohui Cao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Huiying Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Shuling Xu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ensheng Xu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Pin Wang
- Neurology of Department, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, P. R. China.
| | - Qingwang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
4
|
Wang Z, Jiang C, Jin Y, Yang J, Zhao Y, Huang L, Yuan Y. Cationic Conjugated Polymer Fluorescence Resonance Energy Transfer for DNA Methylation Assessment to Discriminate the Geographical Origins of Lonicerae japonicae flos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12346-12356. [PMID: 37539957 DOI: 10.1021/acs.jafc.3c02646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The flavor and taste of Lonicerae japonicae flos (LJF) products are heavily influenced by geographical origin. Tracing the geographical origin is an important aspect of LJF quality assessment. Here, DNA methylation analysis coupled with chemometrics revealed that, in 10 CpG islands upstream of genes in the chlorogenic acid and iridoid biosynthetic pathways, DNA methylation differences appear close association with LJF geographical origin. DNA methylation status in these CpG islands was determined using the cationic conjugated polymer fluorescence resonance energy transfer method. As a result, LJFs from 39 geographical origins were classified into four groups corresponding to Northern China, Central Plain of China, Southeast China, and Western China, according to cluster analysis and principal component analysis. Our findings contribute to an understanding of the modulation of LJF taste and can assist in understanding how DNA methylation in LJF varies with geographical origin.
Collapse
Affiliation(s)
- Zhengpeng Wang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Chao Jiang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Yan Jin
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Yuyang Zhao
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| |
Collapse
|
5
|
Hong X, Cheng Q, Ruan M, Yang B, Liu J, Xu L, Zhang Q. Determination of DNA Methyltransferase 1 in Cells Using a RG108-Fluorescein Conjugate to Monitor the Fluorescent Ratio with a Microplate Reader. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2139836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Xiaoqian Hong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qunxian Cheng
- Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, Shanghai, China
| | - Minli Ruan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Baohua Yang
- Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jingyi Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Ling Xu
- Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, Shanghai, China
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angew Chem Int Ed Engl 2022; 61:e202201136. [PMID: 35286003 PMCID: PMC9401033 DOI: 10.1002/anie.202201136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Cofactors are required for almost half of all enzyme reactions, but their functions and binding partners are not fully understood even after decades of research. Functionalised cofactor mimics that bind in place of the unmodified cofactor can provide answers, as well as expand the scope of cofactor activity. Through chemical proteomics approaches such as activity-based protein profiling, the interactome and localisation of the native cofactor in its physiological environment can be deciphered and previously uncharacterised proteins annotated. Furthermore, cofactors that supply functional groups to substrate biomolecules can be hijacked by mimics to site-specifically label targets and unravel the complex biology of post-translational protein modification. The diverse activity of cofactors has inspired the design of mimics for use as inhibitors, antibiotic therapeutics, and chemo- and biosensors, and cofactor conjugates have enabled the generation of novel enzymes and artificial DNAzymes.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Martin Pfanzelt
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Stephan A. Sieber
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| |
Collapse
|
7
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Funktionalisierte Cofaktor‐Analoga für die Erforschung von Interaktomen und darüber hinaus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Martin Pfanzelt
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Stephan A. Sieber
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| |
Collapse
|
8
|
DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:535-562. [DOI: 10.1007/978-3-031-11454-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|