1
|
Agrawal HG, Khatun S, Rengan AK, Mishra AK. Tuning the Flavin Core via Donor Appendage for Selective Subcellular Bioimaging and PDT Application. Chemistry 2024; 30:e202401483. [PMID: 38853431 DOI: 10.1002/chem.202401483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Herein, we report a novel flavin analogue as singular chemical component for lysosome bioimaging, and inherited photosensitizer capability of the flavin core was demonstrated as a promising candidate for photodynamic therapy (PDT) application. Fine-tuning the flavin core with the incorporation of methoxy naphthyl appendage provides an appropriate chemical design, thereby offering photostability, selectivity, and lysosomal colocalization, along with the aggregation-induced emissive nature, making it suitable for lysosomal bioimaging applications. Additionally, photosensitization capability of the flavin core with photostable nature of the synthesized analogue has shown remarkable capacity for generating reactive oxygen species (ROS) within cells, making it a promising candidate for photodynamic therapy (PDT) application.
Collapse
Affiliation(s)
- Harsha Gopal Agrawal
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, 502285, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, 502285, India
| | - Ashutosh Kumar Mishra
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Telangana, 502285, India
| |
Collapse
|
2
|
Nabawy A, Makabenta JM, Park J, Huang R, Nayar V, Patel R, Rotello VM. Nature-Derived Gelatin-Based Antifungal Nanotherapeutics for combatting Candida albicans Biofilms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:637-644. [PMID: 38841652 PMCID: PMC11149111 DOI: 10.1039/d3en00372h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Infections caused by fungi are emerging global health challenges that are exacerbated by the formation of fungal biofilms. Further challenges arise from environmental contamination with antifungal agents, which promotes environmental acquisition of antifungal resistance. We report the generation of an efficient, sustainable, all-natural antifungal nanotherapeutic based on the integration of an antimicrobial natural essential oil into a gelatin-based nanoemulsion platform. Carvacrol-loaded gelatin nanoemulsions penetrated Candida albicans biofilms, resulting in death of C. albicans cells in biofilms, and displayed selective biofilm elimination without harmful effects on fibroblast cells in a fungal biofilm-mammalian fibroblast co-culture model. Furthermore, the nanoemulsions degraded in the presence of physiologically relevant biomolecules, reducing the potential for environmental pollution and ecotoxicity. Overall, the sustainability, and efficacy of the described gelatin nanoemulsion formulation provides an environmentally friendly strategy for treating biofilm-associated fungal infections, including those caused by drug-resistant fungi.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Varun Nayar
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| |
Collapse
|
3
|
Saryeddine L, Hadnutt J, Grélard A, Morvan E, Alies B, Buré C, Bestel I, Badarau E. Design of light-responsive amphiphilic self-assemblies: A novel application of the photosensitive diazirine moiety. J Colloid Interface Sci 2024; 653:1792-1804. [PMID: 37805274 DOI: 10.1016/j.jcis.2023.09.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Diazirine is one of the smallest photo-sensitive moieties discovered to date. When incorporated in the structure of phospholipids, its minimal size has a low impact on the morphology of the resultant liposomes. A DMPC-diazirine analogue was designed and subsequently used to generate liposomes with a lower permeability and a lower phase-transition temperature compared to control DMPC liposomes. Contrary to control liposomes, in the absence of light, the photosensitive nanoparticles retained the cargo (calcein) for at least 10 days. However, upon irradiation, diazirine's conversion triggered the fluorophore release within minutes. The kinetics of the release could be tuned by the power and duration of the irradiation process. The same approach can be used on other nanomaterials, with the final goal of discovering a release profile appropriate not only for therapeutic applications, but also for agrochemicals delivery or cosmoceutics.
Collapse
Affiliation(s)
- Lilian Saryeddine
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Josh Hadnutt
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France; Univ. Bordeaux, CNRS, INSERM, UAR3033 US001, IECB, 33600 Pessac, France
| | - Bruno Alies
- Univ. Bordeaux, CNRS, INSERM U1212, UMR 5320, 33076 Bordeaux, France
| | - Corinne Buré
- Univ. Bordeaux, CNRS, INSERM, UAR3033 US001, IECB, 33600 Pessac, France
| | - Isabelle Bestel
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Eduard Badarau
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France.
| |
Collapse
|
4
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Ribes J, Bourdeau Y, Rascol E, Bestel I, Badarau E. Enhancing the photosensitizing activity of natural flavins: Tuning the heavy-atom effect in the isoalloxazine series. Bioorg Med Chem 2023; 81:117210. [PMID: 36791612 DOI: 10.1016/j.bmc.2023.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Structure-photosensitizing activity relationships for a series of flavin analogues were investigated with the final goal of identifying the most potent photosensitizer in these series. The main structural modifications involved the introduction of various halogen atoms in C7- and/or C8-positions on the isoalloxazine ring. These compounds were synthesized by reacting judiciously-functionalized anilines with alloxan. The SAR trends showed that the photosensitizing activity increased with the size of the halogen atoms, confirming the importance of the heavy-atom effect on the photosensitizer's activity. The halogens in C8 were more active than the di-substituted halogens, which in turn were more active than the C7-substituted equivalents. However, even if the photosensitizing activity is slightly less important for the 7- compared to the 8-substituted derivatives, the 7-haloisoalloxazines are promising photosensitizers, as they present a better cellular toxicity profile than the 8-substituted analoges. The photosensitizing activity perfectly correlated with the determined fluorescence for the same compounds. Except for the dihalogeno derivatives, all the compounds were not toxic up to a 50 μM range.
Collapse
Affiliation(s)
- Jonathan Ribes
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Yann Bourdeau
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Estelle Rascol
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Isabelle Bestel
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France
| | - Eduard Badarau
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN), Allée Geoffroy Saint Hilaire, Bât B14, 33600 Pessac, France.
| |
Collapse
|
6
|
Ribes J, Cossard P, Al Yaman K, Bestel I, Badarau E. Investigating the photosensitization activities of flavins irradiated by blue LEDs. RSC Adv 2023; 13:2355-2364. [PMID: 36741136 PMCID: PMC9841770 DOI: 10.1039/d2ra07379j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Due to their ability to easily absorb light and to generate highly reactive species, photosensitizers emerged as promising tools in a wide variety of physico-chemical and biological processes. Natural photosensitizers have the benefit of a life-compatible toxicological profile. Porphyrins and flavins are such examples that already proved their efficiency as photo-dynamic therapeutics. The present article describes a reliable, easy-to-implement, readily available and reproducible method that can be used to characterize the photosensitizing activity of flavins. Several key factors were investigated during this study, the optimum parameters were: (i) a blue LED light source (λ em = 455 nm) at 6.69 mW; (ii) a pH of 6 mimicking the tumoral environment; (iii) an air-saturated atmosphere reaction medium, (iv) a tetrazolium dye (MTT) was used to monitor the photosensitization efficacy via the generation of the colored MTT-formazan product. This method can be used to rank a series of flavins based on their photosensitizing activities. Such structure-photosensitization activity relationships are essential for the discovery of future potent photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Jonathan Ribes
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN)Allée Geoffroy Saint Hilaire, Bât B1433600 PessacFrance
| | - Pauline Cossard
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN)Allée Geoffroy Saint Hilaire, Bât B1433600 PessacFrance
| | - Khaled Al Yaman
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN)Allée Geoffroy Saint Hilaire, Bât B1433600 PessacFrance
| | - Isabelle Bestel
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN)Allée Geoffroy Saint Hilaire, Bât B1433600 PessacFrance
| | - Eduard Badarau
- University of Bordeaux, CNRS, CBMN, UMR 5248, Institute of Chemistry and Biology of Membranes & Nano-objects (CBMN)Allée Geoffroy Saint Hilaire, Bât B1433600 PessacFrance
| |
Collapse
|
7
|
Mekseriwattana W, Thiangtrongjit T, Reamtong O, Wongtrakoongate P, Katewongsa KP. Proteomic Analysis Reveals Distinct Protein Corona Compositions of Citrate- and Riboflavin-Coated SPIONs. ACS OMEGA 2022; 7:37589-37599. [PMID: 36312366 PMCID: PMC9609060 DOI: 10.1021/acsomega.2c04440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized as one of the most beneficial tools for biomedicine, especially in theranostic applications. Even though SPIONs have excellent properties regarding their biocompatibility and unique magnetic properties, they lack stability in biological fluids. To stabilize and increase the specificity of the SPIONs to target desirable cells or tissues, several surface coatings have been introduced. These surface coatings can lead to different preferences of serum protein bindings, which ultimately determine their behaviors in vitro and in vivo. Thus, understanding the interaction of SPIONs with biological systems is important for their biocompatible design and clinical applications. In this study, using proteomic analyses, we analyzed the protein corona fingerprints on SPIONs with two different coatings, including citrate and riboflavin, that have been widely used as surface coatings and ligands for enhancing cellular uptake in breast cancer cells. Though both citrate-coated SPIONs (C-SPIONs) and riboflavin-coated SPIONs (Rf-SPIONs) showed similar sizes and zeta potentials, we found that Rf-SPIONs adsorbed more serum proteins than bare SPIONs (B-SPIONs) or C-SPIONs, which was likely due to the higher hydrophobicity of the riboflavin. The enriched proteins consisted mainly of immune-responsive and blood coagulation proteins with different fingerprint profiles. Cellular uptake studies in MCF-7 breast cancer cells comparing the activities of preformed and in situ coronas showed different uptake behaviors, suggesting the role of protein corona formation in promoting the interaction between the SPIONs and the cells. The results obtained here provide the essential information for further development of the potential strategy to reduce or stimulate immune response in vivo to increase therapeutic applications of both C-SPIONs and Rf-SPIONs.
Collapse
Affiliation(s)
- Wid Mekseriwattana
- School
of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department
of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Onrapak Reamtong
- Department
of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department
of Biochemistry, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- Center
for Neuroscience, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Kanlaya Prapainop Katewongsa
- School
of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department
of Biochemistry, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Tian J, Qiao F, Hou Y, Tian B, Yang J. Exploring space-energy matching via quantum-molecular mechanics modeling and breakage dynamics-energy dissipation via microhydrodynamic modeling to improve the screening efficiency of nanosuspension prepared by wet media milling. Expert Opin Drug Deliv 2021; 18:1643-1657. [PMID: 34382869 DOI: 10.1080/17425247.2021.1967928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The preparation of nanosuspensions by wet media milling is a promising technique that increases the bioavailability of insoluble drugs. The nanosuspension is thermodynamically unstable, where its stability might be influenced by the interaction energy between the stabilizers and the drugs after milling at a specific collision energy. However, it is difficult to screen the stabilizers and the parameters of milling accurately and quickly by using traditional analysis methods. Quantum-molecular mechanics and microhydrodynamic modeling can be applied to improve screening efficiency.Areas covered: Quantum-molecular mechanics model, which includes molecular docking, molecular dynamics simulations, and data on binding energy, provides insights into screening stabilizers based on their molecular behavior at the atomic level. The microhydrodynamic model explores the mechanical processes and energy dissipation in nanomilling, and even combines information on the mechanical modulus and an energy vector diagram for the milling parameters screening of drug crystals.Expert opinion: These modeling methods improve screening efficiency and support screening theories based on thermodynamics and physical dynamics. However, how to reasonably combine different modeling methods with their theoretical characteristics and further multidimensional and cross-scale simulations of nanosuspension formation remain challenges.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Food and Biological Engineering, Shanxi University of Science and Technology, Weiyang University Park, Xi'an, P R China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| |
Collapse
|
9
|
Li CH, Landis RF, Makabenta JM, Nabawy A, Tronchet T, Archambault D, Liu Y, Huang R, Golan M, Cui W, Mager J, Gupta A, Schmidt-Malan S, Patel R, Rotello VM. Nanotherapeutics using all-natural materials. Effective treatment of wound biofilm infections using crosslinked nanoemulsions. MATERIALS HORIZONS 2021; 8:1776-1782. [PMID: 34594564 PMCID: PMC8478344 DOI: 10.1039/d0mh01826k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial wound infections are a threat to public health. Although antibiotics currently provide front-line treatments for bacterial infections, the development of drug resistance coupled with the defenses provided through biofilm formation render these infections difficult, if not impossible, to cure. Antimicrobials from natural resources provide unique antimicrobial mechanisms and are generally recognized as safe and sustainable. Herein, an all-natural antimicrobial platform is reported. It is active against bacterial biofilms and accelerates healing of wound biofilm infections in vivo. This antimicrobial platform uses gelatin stabilized by photocrosslinking using riboflavin (vitamin B2) as a photocatalyst, and carvacrol (the primary constituent of oregano oil) as the active antimicrobial. The engineered nanoemulsions demonstrate broad-spectrum antimicrobial activity towards drug-resistant bacterial biofilms and significantly expedite wound healing in an in vivo murine wound biofilm model. The antimicrobial activity, wound healing promotion, and biosafety of these nanoemulsions provide a readily translatable and sustainable strategy for managing wound infections.
Collapse
Affiliation(s)
- Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|