1
|
Lewis MR, Schaedler AW, Ho KV, Golzy M, Mathur A, Pun M, Gallazzi F, Watkinson LD, Carmack TL, Sikligar K, Anderson CJ, Smith CJ. Evaluation of a bimodal, matched pair theranostic agent targeting prostate-specific membrane antigen. Nucl Med Biol 2024; 136-137:108938. [PMID: 39032262 DOI: 10.1016/j.nucmedbio.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Prostate cancer affects 1 in 6 men, and it is the second‑leading cause of cancer-related death in American men. Surgery is one of the main treatment modalities for prostate cancer, but it often results in incomplete resection margins or complete resection that leads to nerve damage and undesirable side effects. In the present work, we have developed a new bimodal tracer, NODAGA-sCy7.5 PSMAi (prostate-specific membrane antigen inhibitor), labeled with the true matched theranostic pair 64Cu/67Cu and a near-infrared fluorescent dye. This agent could potentially be used for concomitant PET imaging, optical surgical navigation, and targeted radiopharmaceutical therapy. METHODS A prostate-specific membrane antigen (PSMA)-targeting urea derivative was conjugated to NODAGA for copper radiolabeling and to the near-infrared fluorophore sulfo-Cy7.5 (sCy7.5). Binding studies were performed in PSMA-positive PC-3 PIP cells, as well as uptake and internalization assays in PC-3 PIP cells and PSMA-negative PC-3 wild type cells. Biodistribution studies of the 64Cu-labeled compound were performed in PC-3 PIP- and PC-3 tumor-bearing mice, and 67Cu biodistributions of the agent were obtained in PC-3 PIP tumor-carrying mice. PET imaging and fluorescence imaging were also performed, using the same molar doses, in the two mouse models. RESULTS The PSMA conjugate bound with high affinity to PSMA-positive prostate cancer cells, as opposed to cells that were PSMA-negative. Uptake and internalization were rapid and PSMA-mediated in PC-3 PIP cells, while only minimal non-specific uptake was observed in PC-3 cells. Biodistribution studies showed specific uptake in PC-3 PIP tumors, while accumulation in PC-3 tumor-bearing mice was low. Furthermore, tumor uptake of the 67Cu-labeled agent in the PC-3 PIP model was statistically equivalent to that of 64Cu. PET and fluorescence imaging at 0.5 nmol per mouse also demonstrated that PC-3 PIP tumors could be clearly detected, while PC-3 tumors showed no tumor accumulation. CONCLUSIONS NODAGA-sCy7.5-PSMAi was specific and selective in detecting PSMA-positive, as opposed to PSMA-negative, tumors in mouse models of prostate cancer. This bioconjugate could potentially be used for PET staging with 64Cu, targeted radiopharmaceutical therapy with 67Cu, and/or image-guided surgery with sCy7.5.
Collapse
Affiliation(s)
- Michael R Lewis
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America; Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States of America.
| | - Alexander W Schaedler
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America; Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America
| | - Khanh-Van Ho
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Mojgan Golzy
- Biostatistics Unit, University of Missouri, Columbia, MO, United States of America
| | - Anupam Mathur
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America
| | - Michael Pun
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Fabio Gallazzi
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Molecular Interactions Core, University of Missouri, Columbia, MO, United States of America
| | - Lisa D Watkinson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America
| | - Terry L Carmack
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Reactor Center, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America
| | - Kanishka Sikligar
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America
| | - Carolyn J Anderson
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States of America; Department of Chemistry, University of Missouri, Columbia, MO, United States of America; Department of Radiology, University of Missouri, Columbia, MO, United States of America
| | - Charles J Smith
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Department of Radiology, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
2
|
Santos JF, Braz MT, Raposinho P, Cleeren F, Cassells I, Leekens S, Cawthorne C, Mendes F, Fernandes C, Paulo A. Synthesis and Preclinical Evaluation of PSMA-Targeted 111In-Radioconjugates Containing a Mitochondria-Tropic Triphenylphosphonium Carrier. Mol Pharm 2024; 21:216-233. [PMID: 37992229 DOI: 10.1021/acs.molpharmaceut.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Nuclear DNA is the canonical target for biological damage induced by Auger electrons (AE) in the context of targeted radionuclide therapy (TRT) of cancer, but other subcellular components might also be relevant for this purpose, such as the energized mitochondria of tumor cells. Having this in mind, we have synthesized novel DOTA-based chelators carrying a prostate-specific membrane antigen (PSMA) inhibitor and a triphenyl phosphonium (TPP) group that were used to obtain dual-targeted 111In-radioconjugates ([111In]In-TPP-DOTAGA-PSMA and [111In]In-TPP-DOTAGA-G3-PSMA), aiming to promote a selective uptake of an AE-emitter radiometal (111In) by PSMA+ prostate cancer (PCa) cells and an enhanced accumulation in the mitochondria. These dual-targeted 111In-radiocomplexes are highly stable under physiological conditions and in cell culture media. The complexes showed relatively similar binding affinities toward the PSMA compared to the reference tracer [111In]In-PSMA-617, in line with their high cellular uptake and internalization in PSMA+ PCa cells. The complexes compromised cell survival in a dose-dependent manner and in the case of [111In]In-TPP-DOTAGA-G3-PSMA to a higher extent than observed for the single-targeted congener [111In]In-PSMA-617. μSPECT imaging studies in PSMA+ PCa xenografts showed that the TPP pharmacophore did not interfere with the excellent in vivo tumor uptake of the "golden standard" [111In]In-PSMA-617, although it led to a higher kidney retention. Such kidney retention does not necessarily compromise their usefulness as radiotherapeutics due to the short tissue range of the Auger/conversion electrons emitted by 111In. Overall, our results provide valuable insights into the potential use of mitochondrial targeting by PSMA-based radiocomplexes for efficient use of AE-emitting radionuclides in TRT, giving impetus to extend the studies to other AE-emitting trivalent radiometals (e.g., 161Tb or 165Er) and to further optimize the designed dual-targeting constructs.
Collapse
Affiliation(s)
- Joana F Santos
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Maria T Braz
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
| | - Irwin Cassells
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Simon Leekens
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, B-3000 Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
3
|
Yang X, Nao SC, Lin C, Kong L, Wang J, Ko CN, Liu J, Ma DL, Leung CH, Wang W. A cell-impermeable luminogenic probe for near-infrared imaging of prostate-specific membrane antigen in prostate cancer microenvironments. Eur J Med Chem 2023; 259:115659. [PMID: 37499288 DOI: 10.1016/j.ejmech.2023.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Prostate-specific membrane antigen (PSMA) imaging probes are a promising tool for the diagnosis and image-guided surgery of prostate cancer (PCa). However, PSMA-specific luminescence probes for PCa detection and heterogeneity studies with high imaging contrast are lacking. Here, we report the first near-infrared (NIR) iridium(III) complex for the wash-free and specific imaging of PSMA in PCa cells and spheroids. The conjugation of a PSMA inhibitor, Lys-urea-Glu, to an iridium(III) complex synergizes the PSMA-specific affinity and biocompatibility of the inhibitor with the desirable photophysical properties of the iridium(III) complex, including NIR emission (670 nm), high photostability and a large Stokes shift. The cellular impermeability of the probe along with its strong binding affinity to PSMA enhances its specificity for PSMA, enabling the washing-free luminescent imaging of membrane PSMA with lower cytotoxicity. The probe was successfully applied for selectively visualizing PSMA-expressing cells and for the imaging of PSMA in a multicellular PCa model with good imaging penetration, indicating its potential use in complicated and heterogeneous tumor microenvironments. Furthermore, the probe showed good imaging performance in the PCa-bearing tumor mice via targeting PSMA in vivo. This work provides a novel strategy for the development of highly sensitive and specific NIR probes for PSMA in biological systems in vitro, which is of great significance for the precise diagnosis of PCa and for elucidating PCa heterogeneity.
Collapse
Affiliation(s)
- Xifang Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Chuankai Lin
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Lingtan Kong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Jing Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jinbiao Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau.
| | - Wanhe Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China.
| |
Collapse
|
4
|
Sullivan TE, Hernandez Vargas S, Ghosh SC, AghaAmiri S, Ikoma N, Azhdarinia A. A translational blueprint for developing intraoperative imaging agents via radiopharmaceutical-guided drug design. Curr Opin Chem Biol 2023; 76:102376. [PMID: 37572489 DOI: 10.1016/j.cbpa.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
Cancer imaging is a rapidly evolving field due to the discovery of novel molecular targets and the availability of corresponding techniques to detect them with high precision, accuracy, and sensitivity. Nuclear medicine is the most widely used molecular imaging modality and has a growing toolkit of clinically used radiopharmaceuticals that enable whole-body tumor visualization, staging, and treatment monitoring for a variety of tumors in a non-invasive manner. The need for similar imaging capabilities in the operating room has led to the emergence of fluorescence-guided surgery (FGS) as a powerful technique that gives surgeons unprecedented ability to distinguish tumors from healthy tissues. While a variety of strategies have been used to develop contrast agents for FGS, the use of radiopharmaceuticals as models brings exceptional translational potential and has increasingly been explored. Here, we review strategies used to convert clinically used radiopharmaceuticals into fluorescent and multimodal counterparts. Unique preclinical and clinical capabilities stemming from radiopharmaceutical-based agent design are also discussed to illustrate the advantages of this approach.
Collapse
Affiliation(s)
- Teresa E Sullivan
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| |
Collapse
|
5
|
Uspenskaia AA, Krasnikov PA, Majouga AG, Beloglazkina EK, Machulkin AE. Fluorescent Conjugates Based on Prostate-Specific Membrane Antigen Ligands as an Effective Visualization Tool for Prostate Cancer. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:953-967. [PMID: 37751866 DOI: 10.1134/s0006297923070088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 09/28/2023]
Abstract
Fluorescent dyes are widely used in histological studies and in intraoperative imaging, including surgical treatment of prostate cancer (PC), which is one of the most common types of cancerous tumors among men today. Targeted delivery of fluorescent conjugates greatly improves diagnostic efficiency and allows for timely correct diagnosis. In the case of PC, the protein marker is a prostate-specific membrane antigen (PSMA). To date, a large number of diagnostic conjugates targeting PSMA have been created based on modified urea. The review focuses on the conjugates selectively binding to PSMA and answers the following questions: What fluorescent dyes are already in use in the field of PC diagnosis? What factors influence the structure-activity ratio of the final molecule? What features should be considered when selecting a fluorescent tag to create new diagnostic conjugates? And what could be suggested to further development in this field at the present time?
Collapse
Affiliation(s)
| | - Pavel A Krasnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander G Majouga
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology "MISiS", Moscow, 119049, Russia
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | | | - Aleksei E Machulkin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- RUDN University, Moscow, 117198, Russia
| |
Collapse
|
6
|
Rangel-Núñez C, Molina-Pinilla I, Ramírez-Trujillo C, Suárez-Cruz A, Martínez SB, Bueno-Martínez M. Tackling Antibiotic Resistance: Influence of Aliphatic Branches on Broad-Spectrum Antibacterial Polytriazoles against ESKAPE Group Pathogens. Pharmaceutics 2022; 14:pharmaceutics14112518. [PMID: 36432710 PMCID: PMC9692804 DOI: 10.3390/pharmaceutics14112518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
One of the most important threats to public health is the appearance of multidrug-resistant pathogenic bacteria, since they are the cause of a high number of deaths worldwide. Consequently, the preparation of new effective antibacterial agents that do not generate antimicrobial resistance is urgently required. We report on the synthesis of new linear cationic antibacterial polytriazoles that could be a potential source of new antibacterial compounds. These polymers were prepared by thermal- or copper-catalyzed click reactions of azide and alkyne functions. The antibacterial activity of these materials can be modulated by varying the size or nature of their side chains, as this alters the hydrophilic/hydrophobic balance. Antibacterial activity was tested against pathogens of the ESKAPE group. The P3TD polymer, which has butylated side chains, was found to have the highest bactericidal activity. The toxicity of selected polytriazoles was investigated using human red blood cells and a human gingival fibroblast cell line. The propensity of prepared polytriazoles to induce resistance in certain bacteria was studied. Some of them were found to not produce resistance in methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The interaction of these polytriazoles with the Escherichia coli membrane produces both depolarization and disruption of the membrane.
Collapse
Affiliation(s)
- Cristian Rangel-Núñez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Inmaculada Molina-Pinilla
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Cristina Ramírez-Trujillo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Adrián Suárez-Cruz
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | | | - Manuel Bueno-Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
- Correspondence:
| |
Collapse
|
7
|
Meher N, Ashley GW, Bidkar AP, Dhrona S, Fong C, Fontaine SD, Beckford Vera DR, Wilson DM, Seo Y, Santi DV, VanBrocklin HF, Flavell RR. Prostate-Specific Membrane Antigen Targeted Deep Tumor Penetration of Polymer Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50569-50582. [PMID: 36318757 PMCID: PMC9673064 DOI: 10.1021/acsami.2c15095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 05/05/2023]
Abstract
Tumoral uptake of large-size nanoparticles is mediated by the enhanced permeability and retention (EPR) effect, with variable accumulation and heterogenous tumor tissue penetration depending on the tumor phenotype. The performance of nanocarriers via specific targeting has the potential to improve imaging contrast and therapeutic efficacy in vivo with increased deep tissue penetration. To address this hypothesis, we designed and synthesized prostate cancer-targeting starPEG nanocarriers (40 kDa, 15 nm), [89Zr]PEG-(DFB)3(ACUPA)1 and [89Zr]PEG-(DFB)1(ACUPA)3, with one or three prostate-specific membrane antigen (PSMA)-targeting ACUPA ligands. The in vitro PSMA binding affinity and in vivo pharmacokinetics of the targeted nanocarriers were compared with a nontargeted starPEG, [89Zr]PEG-(DFB)4, in PSMA+ PC3-Pip and PSMA- PC3-Flu cells, and xenografts. Increasing the number of ACUPA ligands improved the in vitro binding affinity of PEG-derived polymers to PC3-Pip cells. While both PSMA-targeted nanocarriers significantly improved tissue penetration in PC3-Pip tumors, the multivalent [89Zr]PEG-(DFB)1(ACUPA)3 showed a remarkably higher PC3-Pip/blood ratio and background clearance. In contrast, the nontargeted [89Zr]PEG-(DFB)4 showed low EPR-mediated accumulation with poor tumor tissue penetration. Overall, ACUPA conjugated targeted starPEGs significantly improve tumor retention with deep tumor tissue penetration in low EPR PC3-Pip xenografts. These data suggest that PSMA targeting with multivalent ACUPA ligands may be a generally applicable strategy to increase nanocarrier delivery to prostate cancer. These targeted multivalent nanocarriers with high tumor binding and low healthy tissue retention could be employed in imaging and therapeutic applications.
Collapse
Affiliation(s)
- Niranjan Meher
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Gary W. Ashley
- ProLynx
Inc., San Francisco, California 94158, United States
| | - Anil P. Bidkar
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Suchi Dhrona
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Cyril Fong
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | | | - Denis R. Beckford Vera
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Daniel V. Santi
- ProLynx
Inc., San Francisco, California 94158, United States
| | - Henry F. VanBrocklin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158-2517, United States
| |
Collapse
|
8
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|
9
|
Dual-Labelling Strategies for Nuclear and Fluorescence Molecular Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040432. [PMID: 35455430 PMCID: PMC9028399 DOI: 10.3390/ph15040432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging offers the possibility to investigate biological and biochemical processes non-invasively and to obtain information on both anatomy and dysfunctions. Based on the data obtained, a fundamental understanding of various disease processes can be derived and treatment strategies can be planned. In this context, methods that combine several modalities in one probe are increasingly being used. Due to the comparably high sensitivity and provided complementary information, the combination of nuclear and optical probes has taken on a special significance. In this review article, dual-labelled systems for bimodal nuclear and optical imaging based on both modular ligands and nanomaterials are discussed. Particular attention is paid to radiometal-labelled molecules for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) and metal complexes combined with fluorescent dyes for optical imaging. The clinical potential of such probes, especially for fluorescence-guided surgery, is assessed.
Collapse
|
10
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|