1
|
Peng Y, Bryan C, Yang K. Mass Spectrometry Evidence for Forming Schiff Base 3'-DNA-Histone Cross-Links from Abasic Sites in Vitro and in Human Cells. Chem Res Toxicol 2024; 37:216-219. [PMID: 38232149 DOI: 10.1021/acs.chemrestox.3c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Histones catalyze DNA strand incision at apurinic/apyrimidinic (AP) sites accompanied by the formation of reversible but long-lived DNA-protein cross-links at 3'-termini (3'-histone-DPCs). However, the chemical structures of 3'-histone-DPCs are not well characterized, and whether they are formed in cells is uncertain. In this study, we developed a liquid chromatography with tandem mass spectrometry workflow to characterize DPCs produced from the reaction of histones with AP sites and wish to report evidence that histones cross-link to incised AP sites via Schiff bases. We also demonstrated for the first time that 3'-histone-DPCs are produced endogenously in human embryonic kidney 293T cells.
Collapse
Affiliation(s)
- Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cameron Bryan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Yu D, Wang L, Li J, Zeng X, Jia Y, Tian J, Campbell A, Sun H, Fan H. Dual-responsive probe and DNA interstrand crosslink precursor target the unique redox status of cancer cells. Chem Commun (Camb) 2023; 59:14705-14708. [PMID: 37997159 DOI: 10.1039/d3cc05175g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Elevated GSH and H2O2 in cancer cells is sometimes doubted due to their contrary reactivities. Here, we construct a dual-responsive fluorescent probe to confirm the conclusion, and employ this to exploit a redox-inducible DNA interstrand crosslink (ICL) precursor. It crosslinks DNA upon activation by GSH and H2O2, affording an alternative dual-responsive strategy.
Collapse
Affiliation(s)
- Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Jingao Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Xuanwei Zeng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Yuanyuan Jia
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Junyu Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| |
Collapse
|