1
|
Rydzik AM, Balk R, Koegler M, Steinle T, Riether D, Gottschling D. Access to 1'-Amino Carbocyclic Phosphoramidite to Enable Postsynthetic Functionalization of Oligonucleotides. Org Lett 2021; 23:6735-6739. [PMID: 34424724 DOI: 10.1021/acs.orglett.1c02302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a synthesis of a carbocyclic, abasic RNA phosphoramidite decorated with an amino functionality. The building block was efficiently incorporated into an RNA oligonucleotide in a site-specific manner, followed by deprotection to a free amino group. The amino moiety could be further derivatized as exemplified with fluorescein N-hydroxysuccinimide ester. Hence, this convertible building block may provide access to a variety of RNA oligonucleotides via postsynthetic amino group functionalization. In particular, providing a vector toward nucleobase replacements.
Collapse
Affiliation(s)
- Anna M Rydzik
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Regina Balk
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | | | - Tobias Steinle
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Doris Riether
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| | - Dirk Gottschling
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany
| |
Collapse
|
2
|
Bennion MC, Burch MA, Dennis DG, Lech ME, Neuhaus K, Fendler NL, Parris MR, Cuadra JE, Dixon CF, Mukosera GT, Blauch DN, Hartmann L, Snyder NL, Ruppel JV. Synthesis of Porphyrin and Bacteriochlorin Glycoconjugates through CuAAC Reaction Tuning. European J Org Chem 2019; 2019:6496-6503. [PMID: 33041648 PMCID: PMC7546392 DOI: 10.1002/ejoc.201901128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Rapid and reproducible access to a series of unique porphyrin and bacteriochlorin glycoconjugates, including meso-glycosylated porphyrins and bacteriochlorins, and beta-glycosylated porphyrins, via copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) is reported for the first time. The work presented highlights the system-dependent reaction conditions required for glycosylation to porphyrins and bacteriochlorins based on the unique electronic properties of each ring system. Attenuated reaction conditions were used to synthesize fifteen new glycosylated porphyrin and bacteriochlorin analogs in 74 - 99% yield, and were extended to solid support to produce the first oligo(amidoamine)-based porphyrin glycoconjugate. These compounds hold significant potential as next generation water soluble catalysts and photodynamic therapy/photodynamic inactivation (PDT/PDI) agents.
Collapse
Affiliation(s)
- Matthew C Bennion
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Morgan A Burch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David G Dennis
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Melissa E Lech
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Kira Neuhaus
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nikole L Fendler
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Matthew R Parris
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Jessica E Cuadra
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Charlie F Dixon
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - George T Mukosera
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David N Blauch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Joshua V Ruppel
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| |
Collapse
|
3
|
Noorin ES, Feizi S, Dehaghi SM. Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2018-3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
As the utilizing of porphyrins and metalloporphyrins in high dose dosimetry becomes more prevalent, research on structural effects of these molecules on dosimetric characteristics and physicochemical properties of their film dosimeters becomes more and more essential. The present study emphasizes dosimetry (measuring radiolytic bleaching of two novel film dosimeters with spectrophotometric methods against 60Co γ-rays exposure in dose range of 0–100 kGy) and evaluating substituent effects on the radiation response of the film dosimeters (role of organic groups and changing the metal core of porphyrins). With casting of solutions of polycarbonate (PC) containing 0.5 wt.% 5,10,15,20-Tetrakis(2,4,6-trimethoxyphenyl) porphyrin (TTMPP) and 5,10,15,20-Tetraphenyl-21H,23H-porphine manganese (III) chloride (Mn-TPP), two novel radiochromic films with the thickness of 20 μm were fabricated. The presence of porphyrin fragments has been observed in the UV–Vis spectra after γ radiation. Due to the changes of the metal core and substituents of the dye ring, meaningful shifts of maximum absorbance of Soret bands of porphyrins and different radiation response of film-dosimeters were observed. The results were compared with the other polycarbonate/porphyrin film dosimeters. The results indicate that the radiation-induced decoloration of PC/Porphyrin films can be reliably tuned and used in high dose dosimetry.
Collapse
Affiliation(s)
- Eftekhar Sadat Noorin
- Department of Chemistry, Tehran North Branch , Islamic Azad University , Tehran , Iran
| | - Shahzad Feizi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), AEOI , PO Box 11365-3486 , Tehran , Iran , E-mail:
| | | |
Collapse
|
4
|
Noorin ES, Feizi S, Dehaghi SM. Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Two novel radiochromic films with 20 μm thickness were made from casting of solutions of polycarbonate (PC) containing 0.5 wt.% tetra phenyl porphyrin (TPPH2) and 5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride (Fe-TPP). Dosimetric characterization of the films as routine dosimeters were studied by spectrophotometric method. On subjecting TPPH2/PC and Fe-TPP/PC film dosimeters to gamma radiation, radiolytic bleaching of films was observed. The effects of metal-complexation on the radiation response of the film dosimeters were studied under 60Co γ-rays exposure in dose range of 0–100 kGy. The results were also compared with the PC/TPPF20 (PC/tetrakis (pentafluorophenyl) porphyrin) dosimeter to evaluate the substituent effect (role of fluorine groups). Experimental parameters including humidity, temperature and pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight were examined. The maximum absorbance of Soret band of dyes had meaningful shifts and reduction which arose from complexation and substituents. The dyed films characteristics were found to be stable enough in media with high degrees of temperature and humidity. The results indicate that the radiation-induced decoloration of TPPH2/PC and Fe-TPP/PC films can be reliably tuned and used in high dose dosimetry.
Collapse
|
5
|
Jadhav S, Gulumkar V, Deshpande P, Coffey ET, Lönnberg H, Virta P. Synthesis of Azide-Modified Chondroitin Sulfate Precursors: Substrates for "Click"- Conjugation with Fluorescent Labels and Oligonucleotides. Bioconjug Chem 2018; 29:2382-2393. [PMID: 29856920 PMCID: PMC6203187 DOI: 10.1021/acs.bioconjchem.8b00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Azidopropyl-modified
precursors of chondroitin sulfate (CS) tetrasaccharides
have been synthesized, which, after facile conversion to final CS
structures, may be conjugated with alkyne-modified target compounds
by a one-pot “click”-ligation. RP HPLC was used for
the monitoring of the key reaction steps (protecting group manipulation
and sulfation) and purification of the CS precursors (as partially
protected form, bearing the O-Lev, O-benzoyl, and N-trichloroacetyl groups and methyl
esters). Subsequent treatments with aqueous NaOH, concentrated ammonia,
and acetic anhydride (i.e., global deprotection and acetylation of
the galactosamine units) converted the precursors to final CS structures.
The azidopropyl group was exposed to a strain-promoted azide–alkyne
cycloaddition (SPAAC) with a dibenzylcyclooctyne-modified carboxyrhodamine
dye to give labeled CSs. Conjugation with a 5′-cyclooctyne-modified
oligonucleotide was additionally carried out to show the applicability
of the precursors for the synthesis of biomolecular hybrids.
Collapse
Affiliation(s)
- Satish Jadhav
- Department of Chemistry , University of Turku , Vatselankatu 2 , FI 20014 Turku , Finland.,Department of Cellular and Molecular Medicine, School of Medicine , University of California, San Diego , La Jolla , California 92093 , United States
| | - Vijay Gulumkar
- Department of Chemistry , University of Turku , Vatselankatu 2 , FI 20014 Turku , Finland
| | - Prasannakumar Deshpande
- Turku Centre for Biotechnology , University of Turku, Åbo Akademi University , Tykistökatu 6 , FI 20520 Turku , Finland
| | - Eleanor T Coffey
- Turku Centre for Biotechnology , University of Turku, Åbo Akademi University , Tykistökatu 6 , FI 20520 Turku , Finland
| | - Harri Lönnberg
- Department of Chemistry , University of Turku , Vatselankatu 2 , FI 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , Vatselankatu 2 , FI 20014 Turku , Finland
| |
Collapse
|
6
|
Walalawela N, Vignoni M, Urrutia MN, Belh SJ, Greer EM, Thomas AH, Greer A. Kinetic Control in the Regioselective Alkylation of Pterin Sensitizers: A Synthetic, Photochemical, and Theoretical Study. Photochem Photobiol 2018; 94:834-844. [DOI: 10.1111/php.12905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/26/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Niluksha Walalawela
- Department of Chemistry Brooklyn College City University of New York Brooklyn NY
- Ph.D. Program in Chemistry The Graduate Center of the City University of New York New York NY
| | - Mariana Vignoni
- Department of Chemistry Brooklyn College City University of New York Brooklyn NY
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) CCT La Plata‐CONICET La Plata Argentina
| | - María Noel Urrutia
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) CCT La Plata‐CONICET La Plata Argentina
| | - Sarah J. Belh
- Department of Chemistry Brooklyn College City University of New York Brooklyn NY
- Ph.D. Program in Chemistry The Graduate Center of the City University of New York New York NY
| | - Edyta M. Greer
- Department of Natural Sciences Baruch College City University of New York New York NY
| | - Andrés H. Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) CCT La Plata‐CONICET La Plata Argentina
| | - Alexander Greer
- Department of Chemistry Brooklyn College City University of New York Brooklyn NY
- Ph.D. Program in Chemistry The Graduate Center of the City University of New York New York NY
| |
Collapse
|