1
|
Li H, Kim Y, Jung H, Hyun JY, Shin I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev 2022; 51:8957-9008. [DOI: 10.1039/d2cs00722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss recent advances made in the development of NIR fluorescence-emitting small organic molecules for tumor imaging and therapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hyoje Jung
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
2
|
Mukkamala R, Lindeman SD, Kragness KA, Shahriar I, Srinivasarao M, Low PS. Design and Characterization of Fibroblast Activation Protein Targeted Pan-Cancer Imaging Agent for Fluorescence-Guided Surgery of Solid Tumors. J Mater Chem B 2022; 10:2038-2046. [PMID: 35255116 DOI: 10.1039/d1tb02651h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor-targeted fluorescent dyes have been shown to significantly improve a surgeon's ability to locate and resect occult malignant lesions, thereby enhancing a patient’s chances of long term survival. Although several...
Collapse
Affiliation(s)
- Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Spencer D Lindeman
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Kate A Kragness
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Imrul Shahriar
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
3
|
Design of a Near Infrared Fluorescent Ureter Imaging Agent for Prevention of Ureter Damage during Abdominal Surgeries. Molecules 2021; 26:molecules26123739. [PMID: 34205289 PMCID: PMC8234099 DOI: 10.3390/molecules26123739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
The inadvertent severing of a ureter during surgery occurs in as many as 4.5% of colorectal surgeries. To help prevent this issue, several near-infrared (NIR) dyes have been developed to assist surgeons with identifying ureter location. However, the majority of these dyes exhibit at least some issue that precludes their widespread usage such as high levels of uptake in other tissues, overlapping emission wavelengths with other NIR dyes used for other fluorescence-guided surgeries, and/or rapid excretion times through the ureters. To overcome these limitations, we have synthesized and characterized the spectral properties and biodistribution of a new series of PEGylated UreterGlow derivatives. The most promising dye, UreterGlow-11 was shown to almost exclusively excrete through the kidneys/ureters with detectable fluorescence observed for at least 12 h. Additionally, while the excitation wavelength is similar to that of other NIR dyes used for cancer resections, the emission is shifted by ~30 nm allowing for discrimination between the different fluorescence-guided surgery probes. In conclusion, these new UreterGlow dyes show promising optical and biodistribution characteristics and are good candidates for translation into the clinic.
Collapse
|
4
|
Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorg Chem 2021; 112:104946. [PMID: 33989916 DOI: 10.1016/j.bioorg.2021.104946] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Targeted delivery combined with controlled release of drugs has a crucial role in future of personalized medicine. The majority of cancer drugs are intended to interfere with one or more cellular events. Anticancer agents can also be toxic to healthy cells, as healthy cells may also need to proliferate and avoid apoptosis. The focus of this review covers the principles, advantages, drawbacks and summarize criteria that must be met for design of small molecule-drug conjugates (SMDCs) to achieve the desired therapeutic potency with minimal toxicity. SMDCs are composed of a targeting ligand, a releasable bridge, a spacer, and a therapeutic payload. We summarize the criteria for the effective design that influences the selection of tumor specific receptor and optimum elements in the design of SMDCs. We also discuss the criteria for selecting the optimal therapeutic drug payload, spacer and linker. The linker chemistries and cleavage strategies are also discussed. Finally, we review the folate receptor targeting SMDCs that are in preclinical development and in clinical trials.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| |
Collapse
|
5
|
Zhang Y, Li S, Zhang H, Xu H. Design and Application of Receptor-Targeted Fluorescent Probes Based on Small Molecular Fluorescent Dyes. Bioconjug Chem 2021; 32:4-24. [PMID: 33412857 DOI: 10.1021/acs.bioconjchem.0c00606] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, a variety of receptor-targeted fluorescent probes have been developed and widely used to realize the visualization of certain receptors, which facilitates the early diagnosis and treatment of diseases. In this Review, we focus on the recent achievements in design, chemical structure, imaging characterization, and potential applications of receptor-targeted fluorescent probes from the past 10 years. The development and application of receptor-targeted fluorescent probes will expand our knowledge of the distribution and function of disease-related receptors, shed light on the drug discovery for clinical diseases where receptors are implicated, and feed into the diagnosis and treatment of a plethora of diseases, including tumors.
Collapse
Affiliation(s)
- Yujie Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
6
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine Conjugate-Based Biomedical Imaging Probes. Adv Healthc Mater 2020; 9:e2001327. [PMID: 33000915 DOI: 10.1002/adhm.202001327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Cyanine is a class of fluorescent dye with meritorious fluorescence properties and has motivated numerous researchers to explore its imaging capabilities by miscellaneous structural modification and functionalization strategies. The covalent conjugation with other functional molecules represents a distinctive design strategy and has shown immense potential in both basic and clinical research. This review article summarizes recent achievements in cyanine conjugate-based probes for biomedical imaging. Particular attention is paid to the conjugation with targeting warheads and other contrast agents for targeted fluorescence imaging and multimodal imaging, respectively. Additionally, their clinical potential in cancer diagnostics is highlighted and some concurrent impediments for clinical translation are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Yiming Zhou
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Xiuli Yue
- School of Environment Harbin Institute of Technology Harbin 150090 China
| | - Zhifei Dai
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
7
|
Song J, Huang S, Ma P, Zhang B, Jia B, Zhang W. Improving NK1R-targeted gene delivery of stearyl-antimicrobial peptide CAMEL by conjugating it with substance P. Bioorg Med Chem Lett 2020; 30:127353. [PMID: 32631551 DOI: 10.1016/j.bmcl.2020.127353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Specificity is a crucial condition that hampers the application of non-viral vectors for cancer gene therapy. In a previous study, we developed an efficient gene vector, stearyl-CAMEL, using N-terminal stearylation of the antimicrobial peptide CAMEL. Substance P (SP), an 11-residue neuropeptide, rapidly enters cells after binding to the neurokinin-1 receptor (NK1R), which is expressed in many cancer cell lines. In this study, the NK1R-targeted gene vector stearyl-CMSP was constructed by conjugating SP to the C-terminus of stearyl-CAMEL. Our results indicated that stearyl-CMSP displayed significant transfection specificity for NK1R-expressing cells compared with that shown by stearyl-CAMEL. Accordingly, the stearyl-CMSP/p53 plasmid complexes had significantly higher antiproliferative activity against HEK293-NK1R cells than they did against HEK293 cells, while the stearyl-CAMEL/p53 plasmid complexes did not show this specificity in antiproliferative activity. Consequently, conjugation of the NK1R-targeted ligand SP is a simple and successful strategy to construct efficient cancer-targeted non-viral gene vectors.
Collapse
Affiliation(s)
- Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sujie Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Panpan Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020; 10:2631-2644. [PMID: 32194825 PMCID: PMC7052904 DOI: 10.7150/thno.40808] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative image-guided surgery (IGS) has attracted extensive research interests in determination of tumor margins from surrounding normal tissues. Introduction of near infrared (NIR) fluorophores into IGS could significantly improve the in vivo imaging quality thus benefit IGS. Among the reported NIR fluorophores, rare-earth nanoparticles exhibit unparalleled advantages in disease theranostics by taking advantages such as large Stokes shift, sharp emission spectra, and high chemical/photochemical stability. The recent advances in elements doping and morphologies controlling endow the rare-earth nanoparticles with intriguing optical properties, including emission span to NIR-II region and long life-time photoluminescence. Particularly, NIR emissive rare earth nanoparticles hold advantages in reduction of light scattering, photon absorption and autofluorescence, largely improve the performance of nanoparticles in biological and pre-clinical applications. In this review, we systematically compared the benefits of RE nanoparticles with other NIR probes, and summarized the recent advances of NIR emissive RE nanoparticles in bioimaging, photodynamic therapy, drug delivery and NIR fluorescent IGS. The future challenges and promises of NIR emissive RE nanoparticles for IGS were also discussed.
Collapse
Affiliation(s)
- Zhibei Qu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Kanduluru AK, Srinivasarao M, Wayua C, Low PS. Evaluation of a Neurokinin-1 Receptor-Targeted Technetium-99m Conjugate for Neuroendocrine Cancer Imaging. Mol Imaging Biol 2019; 22:377-383. [PMID: 31292915 DOI: 10.1007/s11307-019-01391-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Neuroendocrine tumors (NETs) have reasonably high 5-year survival rates when diagnosed at an early stage but are significantly more lethal when discovered only after metastasis. Although several imaging modalities such as computed tomography (CT), positron emission tomography, and magnetic resonance imaging can detect neuroendocrine tumors, their high false positive rates suggest that more specific diagnostic tests are required. Targeted imaging agents such as Octreoscan® have met some of this need for improved specificity, but their inability to image poorly differentiated NETs suggests that improved NET imaging agents are still needed. Because neurokinin 1 receptors (NK1Rs) are widely over-expressed in neuroendocrine tumors, but show limited expression in healthy tissues, we have undertaken to develop an NK1R-targeted imaging agent for improved diagnosis and staging of neuroendocrine tumors. PROCEDURE A small molecule NK1R antagonist was conjugated via a flexible spacer to a Tc-99m chelating peptide. After complexation with Tc-99m, binding of the conjugate to human embryonic kidney (HEK293) cells transfected with the human NK1R was evaluated as a function of radioimaging agent concentration. In vivo imaging of HEK293-NK1R tumor xenografts in mice was also performed by single-photon emission computed tomography/computed tomography (γ-SPECT/CT), and the distribution of the conjugate in various tissues was quantified by tissue resection and γ-counting. RESULTS NK1R-targeted Tc-99m-based radioimaging agent displayed excellent affinity (Kd = 16.8 nM) and specificity for HEK293-NK1R tumor xenograft. SPECT/CT analysis of tumor-bearing mice demonstrated significant tumor uptake and high tumor to background ratio as early as 2 h post injection. CONCLUSION The excellent tumor contrast afforded by our NK1R-targeted radioimaging agent exhibits properties that could improve early diagnosis and staging of many neuroendocrine tumors.
Collapse
Affiliation(s)
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Charity Wayua
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Philip S Low
- On Target Laboratories Inc., West Lafayette, IN, 47906, USA. .,Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Roy J, Kaake M, Low PS. Small molecule targeted NIR dye conjugate for imaging LHRH receptor positive cancers. Oncotarget 2019; 10:152-160. [PMID: 30719210 PMCID: PMC6349437 DOI: 10.18632/oncotarget.26520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
Overexpression of Luteinizing Hormone Releasing Hormone Receptor (LHRH-R) in various cancers and restricted expression of the receptor in healthy cells qualifies it as a valuable cancer biomarker. Previously, LHRH-R targeted peptides have been utilized to deliver attached payloads to LHRH-R expressing cancers. We report here for the first time the utilization of a small molecule non-peptidic ligand (BOEPL) of LHRH-R to deliver attached payloads to LHRH-R positive tumors. For this purpose, we linked the BOEPL ligand to a near infrared dye via various linkers. In vitro, these conjugates demonstrated low nanomolar binding affinity and in vivo they exhibited receptor-mediated uptake specifically in tumor tissue. Moreover, tumor uptake could be blocked by administration of excess unlabeled conjugate, and time course experiments showed retention of the dye conjugate in the tumor up to 12 h post injection. Because uptake of BOEPL-targeted NIR dye conjugates by nonmalignant organs/tissues was negligible and since the transient presence of targeted NIR dye in the kidneys was a result of clearance mechanism, we suggest that a BOEPL-targeted NIR dye might constitute a useful agent for fluorescence-guided surgery of LHRH-R positive cancers. Moreover, our results also provide proof of concept that BOEPL can be successfully used to deliver attached payloads to LHRH-R positive tumors in vivo.
Collapse
Affiliation(s)
- Jyoti Roy
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.,Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Miranda Kaake
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Philip S Low
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.,Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Lee YG, Marks I, Srinivasarao M, Kanduluru AK, Mahalingam SM, Liu X, Chu H, Low PS. Use of a Single CAR T Cell and Several Bispecific Adapters Facilitates Eradication of Multiple Antigenically Different Solid Tumors. Cancer Res 2018; 79:387-396. [PMID: 30482775 DOI: 10.1158/0008-5472.can-18-1834] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/20/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
Most solid tumors are comprised of multiple clones that express orthogonal antigens, suggesting that novel strategies must be developed in order to adapt chimeric antigen receptor (CAR) T-cell therapies to treat heterogeneous solid tumors. Here, we utilized a cocktail of low-molecular-weight bispecific adapters, each comprised of fluorescein linked to a different tumor-specific ligand, to bridge between an antifluorescein CAR on the engineered T cell and a unique antigen on the cancer cell. This formation of an immunologic synapse between the CAR T cell and cancer cell enabled use of a single antifluorescein CAR T cell to eradicate a diversity of antigenically different solid tumors implanted concurrently in NSG mice. Based on these data, we suggest that a carefully designed cocktail of bispecific adapters in combination with antifluorescein CAR T cells can overcome tumor antigen escape mechanisms that lead to disease recurrence following many CAR T-cell therapies. SIGNIFICANCE: A cocktail of tumor-targeted bispecific adapters greatly augments CAR T-cell therapies against heterogeneous tumors, highlighting its potential for broader applicability against cancers where standard CAR T-cell therapy has failed.
Collapse
Affiliation(s)
- Yong Gu Lee
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Isaac Marks
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Madduri Srinivasarao
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Ananda Kumar Kanduluru
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Sakkarapalayam M Mahalingam
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Xin Liu
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | | | - Philip S Low
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
13
|
Mahalingam SM, Chu H, Liu X, Leamon CP, Low PS. Carbonic Anhydrase IX-Targeted Near-Infrared Dye for Fluorescence Imaging of Hypoxic Tumors. Bioconjug Chem 2018; 29:3320-3331. [PMID: 30185025 DOI: 10.1021/acs.bioconjchem.8b00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Use of tumor-targeted fluorescence dyes to help surgeons identify otherwise undetected tumor nodules, decrease the incidence of cancer-positive margins, and facilitate localization of malignant lymph nodes has demonstrated considerable promise for improving cancer debulking surgery. Unfortunately, the repertoire of available tumor-targeted fluorescent dyes does not permit identification of all cancer types, raising the need to develop additional tumor-specific fluorescent dyes to ensure localization of all malignant lesions during cancer surgeries. By comparing the mRNA levels of the hypoxia-induced plasma membrane protein carbonic anhydrase IX (CA IX) in 13 major human cancers with the same mRNA levels in corresponding normal tissues, we document that CA IX constitutes a nearly universal marker for the design of tumor-targeted fluorescent dyes. Motivated by this expression profile, we synthesize two new CA IX-targeted near-infrared (NIR) fluorescent imaging agents and characterize their physical and biological properties both in vitro and in vivo. We report that conjugation of either acetazolamide or 6-aminosaccharin (i.e., two CA-IX-specific ligands) to the NIR fluorescent dye, S0456, via an extended phenolic spacer creates a brightly fluorescent dye that binds CA IX with high affinity and allows rapid visualization of hypoxic regions of solid tumors at depths >1 cm beneath a tissue surface. Taken together, these data suggest that a CA IX-targeted NIR dye can constitute a useful addition to a cocktail of tumor-targeted NIR dyes designed to image all human cancers.
Collapse
Affiliation(s)
| | - Haiyan Chu
- Endocyte Inc. , 3000 Kent Avenue , West Lafayette , Indiana 47906 , United States
| | | | - Christopher P Leamon
- Endocyte Inc. , 3000 Kent Avenue , West Lafayette , Indiana 47906 , United States
| | | |
Collapse
|
14
|
Matters GL, Harms JF. Utilizing Peptide Ligand GPCRs to Image and Treat Pancreatic Cancer. Biomedicines 2018; 6:biomedicines6020065. [PMID: 29865257 PMCID: PMC6027158 DOI: 10.3390/biomedicines6020065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/18/2022] Open
Abstract
It is estimated that early detection of pancreatic ductal adenocarcinoma (PDAC) could increase long-term patient survival by as much as 30% to 40% (Seufferlein, T. et al., Nat. Rev. Gastroenterol. Hepatol.2016, 13, 74–75). There is an unmet need for reagents that can reliably identify early cancerous or precancerous lesions through various imaging modalities or could be employed to deliver anticancer treatments specifically to tumor cells. However, to date, many PDAC tumor-targeting strategies lack selectivity and are unable to discriminate between tumor and nontumor cells, causing off-target effects or unclear diagnoses. Although a variety of approaches have been taken to identify tumor-targeting reagents that can effectively direct therapeutics or imaging agents to cancer cells (Liu, D. et al., J. Controlled Release2015, 219, 632–643), translating these reagents into clinical practice has been limited, and it remains an area open to new methodologies and reagents (O’Connor, J.P. et al., Nat. Rev. Clin. Oncol. 2017, 14, 169–186). G protein–coupled receptors (GPCRs), which are key target proteins for drug discovery and comprise a large proportion of currently marketed therapeutics, hold significant promise for tumor imaging and targeted treatment, particularly for pancreatic cancer.
Collapse
Affiliation(s)
- Gail L Matters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - John F Harms
- Department of Biological Sciences, Messiah College, Mechanicsburg, PA 17055, USA.
| |
Collapse
|
15
|
Xiao Y, Zhang Q, Wang Y, Wang B, Sun F, Han Z, Feng Y, Yang H, Meng S, Wang Z. Dual-functional protein for one-step production of a soluble and targeted fluorescent dye. Theranostics 2018; 8:3111-3125. [PMID: 29896306 PMCID: PMC5996361 DOI: 10.7150/thno.24613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/17/2018] [Indexed: 01/17/2023] Open
Abstract
Low water solubility and poor selectivity are two fundamental limitations that compromise applications of near-infrared (NIR) fluorescent probes. Methods: Here, a simple strategy that can resolve these problems simultaneously was developed by using a novel hybrid protein named RGD-HFBI that is produced by fusion of hydrophobin HFBI and arginine-glycine-aspartic acid (RGD) peptide. This unique hybrid protein inherits self-assembly and targeting functions from HFBI and RGD peptide respectively. Results: Boron-dipyrromethene (BODIPY) used as a model NIR dye can be efficiently dispersed in the RGD-HFBI solution by simple mixing and sonication for 30 min. The data shows that self-assembled RGD-HFBI forms a protein nanocage by using the BODIPY as the assembly template. Cell uptake assay proves that RGD-HFBI/BODIPY can efficiently stain αvβ3 integrin-positive cancer cells. Finally, in vivo affinity tests fully demonstrate that the soluble RGD-HFBI/BODIPY complex selectively targets and labels tumor sites of tumor-bearing mice due to the high selectivity of the RGD peptide. Conclusion: Our one-step strategy using dual-functional RGD-HFBI opens a novel route to generate soluble and targeted NIR fluorescent dyes in a very simple and efficient way and may be developed as a general strategy to broaden their applications.
Collapse
Affiliation(s)
- Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Qian Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bin Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Fengnan Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ziyu Han
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yaqing Feng
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Low PS, Singhal S, Srinivasarao M. Fluorescence-guided surgery of cancer: applications, tools and perspectives. Curr Opin Chem Biol 2018; 45:64-72. [PMID: 29579618 DOI: 10.1016/j.cbpa.2018.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Thousands of patients die each year from residual cancer that remains following cytoreductive surgery. Use of tumor-targeted fluorescent dyes (TTFDs) to illuminate undetected malignant tissue and thereby facilitate its surgical resection shows promise for reducing morbidity and mortality associated with unresected malignant disease. TTFDs can also improve i) detection of recurrent malignant lesions, ii) differentiation of normal from malignant lymph nodes, iii) accurate staging of cancer patients, iv) detection of tumors during robotic/endoscopic surgery (where tumor palpation is no longer possible), and v) preservation of healthy tissue during resection of cancer tissue. Although TTFDs that passively accumulate in a tumor mass provide some tumor contrast, the most encouraging TTFDs in human clinical trials are either enzyme-activated or ligand-targeted to tumor-specific receptors.
Collapse
Affiliation(s)
- Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States.
| | - Sunil Singhal
- Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Zhang H, Kanduluru AK, Desai P, Ahad A, Carlin S, Tandon N, Weber WA, Low PS. Synthesis and Evaluation of a Novel 64Cu- and 67Ga-Labeled Neurokinin 1 Receptor Antagonist for in Vivo Targeting of NK1R-Positive Tumor Xenografts. Bioconjug Chem 2018; 29:1319-1326. [PMID: 29466853 DOI: 10.1021/acs.bioconjchem.8b00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurokinin 1 receptor (NK1R) is expressed in gliomas and neuroendocrine malignancies and represents a promising target for molecular imaging and targeted radionuclide therapy. The goal of this study was to synthesize and evaluate a novel NK1R ligand (NK1R-NOTA) for targeting NK1R-expressing tumors. Using a carboxymethyl moiety linked to L-733060 as a starting reagent, NK1R-NOTA was synthesized in a three-step reaction and then labeled with 64Cu (or 67Ga for in vitro studies) in the presence of CH3COONH4 buffer. The radioligand affinity and cellular uptake were evaluated with NK1R-transduced HEK293 cells (HEK293-NK1R) and NK1R nontransduced HEK293 cells (HEK293-WT) and their xenografts. Radiolabeled NK1R-NOTA was obtained with a radiochemical purity of >95% and specific activities of >7.0 GBq/μmol for 64Cu and >5.0 GBq/μmol for 67Ga. Both 64Cu- and 67Ga-labeled NK1R-NOTA demonstrated high levels of uptake in HEK293-NK1R cells, whereas co-incubation with an excess of NK1R ligand L-733060 reduced the level of uptake by 90%. Positron emission tomography (PET) imaging showed that [64Cu]NK1R-NOTA had a accumulated rapidly in HEK293-NK1R xenografts and a 10-fold lower level of uptake in HEK293-WT xenografts. Radioactivity was cleared by gastrointestinal tract and urinary systems. Biodistribution studies confirmed that the tumor-to-organ ratios were ≥5 for all studied organs at 1 h p.i., except kidneys, liver, and intestine, and that the tumor-to-intestine and tumor-to-kidney ratios were also improved 4 and 20 h post-injection. [64Cu]NK1R-NOTA is a promising ligand for PET imaging of NK1R-expressing tumor xenografts. Delayed imaging with [64Cu]NK1R-NOTA improves image contrast because of the continuous clearance of radioactivity from normal organs.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Ananda Kumar Kanduluru
- Department of Chemistry and Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47906 , United States
| | - Pooja Desai
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Afruja Ahad
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Sean Carlin
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Nidhi Tandon
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Wolfgang A Weber
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Molecular Pharmacology & Chemistry Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47906 , United States
| |
Collapse
|
18
|
Intraoperative Near-Infrared Fluorescence Imaging of Multiple Pancreatic Neuroendocrine Tumors: A Case Report. Pancreas 2018; 47:130-133. [PMID: 29232342 DOI: 10.1097/mpa.0000000000000951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple endocrine neoplasia type 1 syndrome can feature pancreatic neuroendocrine lesions that have the potential to degenerate into malignancies (pancreatic neuroendocrine tumors [PNETs]). Resection is required in selected cases and aims to cure patients and to prevent metastasis. Preoperative imaging is important to assess the number, size, and location of PNETs. However, sensitivity of preoperative imaging modalities to detect small lesions can be rather disappointing. This makes intraoperative reassessment of the pancreas crucial. Methylene blue (MB) accumulates in neuroendocrine lesions after intravenous administration. Methylene blue emits fluorescence of approximately 700 nm and can be visualized using a dedicated near-infrared (NIR) fluorescence imaging system. We present a 58-year-old male patient with multiple endocrine neoplasia type 1 syndrome and 2 lesions suspected as PNETs identified during regular follow-up. Intraoperative administration of MB allowed successful NIR fluorescence imaging of multiple lesions missed by preoperative imaging. After confirmation by intraoperative ultrasound, this new finding led to a major change in treatment: from enucleations to total pancreatectomy. Histopathologic examination confirmed that the fluorescent lesions were indeed neuroendocrine lesions ranging from microadenomas to PNETs. This case demonstrates that intraoperative assessment of neuroendocrine lesions can be improved by intraoperative NIR fluorescence imaging using MB, a safe and relatively easy technique.
Collapse
|
19
|
Mahalingam SM, Dudkin V, Goldberg S, Klein D, Yi F, Singhal S, O’Neil KT, Low PS. Evaluation of a Centyrin-Based Near-Infrared Probe for Fluorescence-Guided Surgery of Epidermal Growth Factor Receptor Positive Tumors. Bioconjug Chem 2017; 28:2865-2873. [PMID: 28945346 PMCID: PMC11017363 DOI: 10.1021/acs.bioconjchem.7b00566] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor-targeted near-infrared fluorescent dyes have the potential to improve cancer surgery by enabling surgeons to locate and resect more malignant lesions where good visualization tools are required to ensure complete removal of malignant tissue. Although the tumor-targeted fluorescent dyes used in humans to date have been either small organic molecules or high molecular weight antibodies, low molecular weight protein scaffolds have attracted significant attention because they penetrate solid tumors almost as efficiently as small molecules, but can be infinitely mutated to bind almost any antigen. Here we describe the use of a 10 kDa protein scaffold, a Centyrin, to target a near-infrared fluorescent dye to tumors that overexpress the epidermal growth factor receptor (EGFR) for fluorescence-guided surgery (FGS). We have developed and optimized the dose and time required for imaging small tumor burdens with minimal background fluorescence in real-time fluorescence-guided surgery of EGFR-expressing tumor xenografts in murine models. We demonstrate that the Centyrin-near-infrared dye conjugate (CNDC) binds selectively to human EGFR+ cancer cells with an EC50 of 2 nM, localizes to EGFR+ tumor xenografts in athymic nude mice and that uptake of the dye in xenografts is significantly reduced when EGFR are blocked by preinjection of excess unlabeled Centyrin. Taken together, these data suggest that CNDCs can be used for intraoperative identification and surgical removal of EGFR-expressing lesions and that Centyrins targeted to other tumor-specific antigens should prove similarly useful in fluorescence guided surgery of cancer. In addition, we demonstrate that the CNDC is detected in the NIR region of the spectrum and can be utilized for fluorescence-guided surgery (FGS). In addition, we propose that with its eventual complete clearance from EGFR-negative tissues and its quantitative retention in the tumor mass for >24 h, a Centyrin-targeted NIR dye should provide excellent tumor contrast when injected at least 6-8 h before initiation of cancer surgery in human patients.
Collapse
Affiliation(s)
- Sakkarapalayam M. Mahalingam
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vadim Dudkin
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Shalom Goldberg
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Donna Klein
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Fang Yi
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Karyn T. O’Neil
- Janssen Research & Development, 1400 McKean Road, Springhouse PA 19477, United States
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Kanduluru AK, Low PS. Development of a Ligand-Targeted Therapeutic Agent for Neurokinin-1 Receptor Expressing Cancers. Mol Pharm 2017; 14:3859-3865. [PMID: 28969417 DOI: 10.1021/acs.molpharmaceut.7b00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ananda Kumar Kanduluru
- Department of Chemistry and
Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Department of Chemistry and
Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Affiliation(s)
- Madduri Srinivasarao
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Haque A, Faizi MSH, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorg Med Chem 2017; 25:2017-2034. [PMID: 28284863 DOI: 10.1016/j.bmc.2017.02.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
Cancer is a group of diseases responsible for the major causes of mortality and morbidity among people of all ages. Even though medical sciences have made enormous growth, complete treatment of this deadly disease is still a challenging task. Last few decades witnessed an impressive growth in the design and development of near infrared (NIR) fluorophores with and without recognition moieties for molecular recognitions, imaging and image guided surgeries. The present article reviews recently reported NIR emitting organic/inorganic fluorophores that targets and accumulates in organelle/organs specifically for molecular imaging of cancerous cells. Near infrared (NIR probe) with or without a tumor-targeting warhead have been considered and discussed for their applications in the field of cancer imaging. In addition, challenges persist in this area are also delineated in this review.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman.
| | | | - Jahangir Ahmad Rather
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muhammad S Khan
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|