1
|
Nii M, Yamaguchi K, Tojo T, Narushima N, Aoki S. Induction of Paraptotic Cell Death in Cancer Cells by Triptycene-Peptide Hybrids and the Revised Mechanism of Paraptosis II. Biochemistry 2024; 63:2111-2130. [PMID: 39140188 PMCID: PMC11375786 DOI: 10.1021/acs.biochem.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
In previous work, we reported on iridium(III) (Ir(III)) complex-peptide hybrids as amphiphilic conjugates (IPH-ACs) and triptycene-peptide hybrids as amphiphilic conjugates (TPH-ACs) and found that these hybrid compounds containing three cationic KK(K)GG peptide units through C6-C8 alkyl linkers induce paraptosis II, which is one of the nonapoptotic programmed cell death (PCD) types in Jurkat cells and different from previously reported paraptosis. The details of that study revealed that the paraptosis II induced by IPH-ACs (and TPH-ACs) proceeds via a membrane fusion or tethering of the endoplasmic reticulum (ER) and mitochondria, and Ca2+ transfer from the ER to mitochondria, which results in a loss of mitochondrial membrane potential (ΔΨm) in Jurkat cells. However, the detailed mechanistic studies of paraptosis II have been conducted only in Jurkat cells. In the present work, we decided to conduct mechanistic studies of paraptosis II in HeLa-S3 and A549 cells as well as in Jurkat cells to study the general mechanism of paraptosis II. Simultaneously, we designed and synthesized new TPH-ACs functionalized with peptides that contain cyclohexylalanine, which had been reported to enhance the localization of peptides to mitochondria. We found that TPH-ACs containing cyclohexylalanine promote paraptosis II processes in Jurkat, HeLa-S3 and A549 cells. The results of the experiments using fluorescence Ca2+ probes in mitochondria and cytosol, fluorescence staining agents of mitochondria and the ER, and inhibitors of paraptosis II suggest that TPH-ACs induce Ca2+ increase in mitochondria and the membrane fusion between the ER and mitochondria almost simultaneously, suggesting that our previous hypothesis on the mechanism of paraptosis II should be revised.
Collapse
Affiliation(s)
- Mayuka Nii
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Toshifumi Tojo
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Nozomi Narushima
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Biomedical Sciences (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Huang L, Lee LCC, Shum J, Xu GX, Lo KKW. Construction of photofunctional peptide conjugates through selective modification of N-terminal cysteine with cyclometallated iridium(III) 2-formylphenylboronic acid complexes for organelle-specific imaging, enzyme activity sensing and photodynamic therapy. Chem Commun (Camb) 2024; 60:6186-6189. [PMID: 38805236 DOI: 10.1039/d4cc01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Luminescent cyclometallated iridium(III) complexes bearing a 2-formylphenylboronic acid moiety were designed; one of the complexes was utilised to modify peptides containing an N-terminal cysteine to afford luminescent conjugates with selective organelle-targeting or furin-responsive properties.
Collapse
Affiliation(s)
- Lili Huang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Kanbe A, Yokoi K, Yamada Y, Tsurui M, Kitagawa Y, Hasegawa Y, Ogata D, Yuasa J, Aoki S. Optical Resolution of Carboxylic Acid Derivatives of Homoleptic Cyclometalated Iridium(III) Complexes via Diastereomers Formed with Chiral Auxiliaries. Inorg Chem 2023; 62:11325-11341. [PMID: 37432912 PMCID: PMC10369494 DOI: 10.1021/acs.inorgchem.3c00685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/13/2023]
Abstract
We report on a facile method for the optical resolution of cyclometalated iridium(III) (Ir(III)) complexes via diastereomers formed with chiral auxiliaries. The racemic carboxylic acids of Ir(III) complexes (fac-4 (fac-Ir(ppyCO2H)3 (ppy: 2-phenylpyridine)), fac-6 (fac-Ir(tpyCO2H)3 (tpy: 2-(4'-tolyl)pyridine)), and fac-13 (fac-Ir(mpiqCO2H)3 (mpiq: 1-(4'-methylphenyl)isoquinoline))) were converted into the diastereomers, Δ- and Λ-forms of fac-9 (from fac-6), fac-10 (from fac-4), fac-11 (from fac-6), and fac-14 (from fac-13), respectively, by the condensation with (1R,2R)-1,2-diaminocyclohexane or (1R,2R)-2-aminocyclohexanol. The resulting diastereomers were separated by HPLC (with a nonchiral column) or silica gel column chromatography, and their absolute stereochemistry was determined by X-ray single-crystal structure analysis and CD (circular dichroism) spectra. Spectra of all diastereomers of the Ir(III) complexes are reported. Hydrolysis of the ester moieties of Δ- and Λ-forms of fac-10, fac-11, and fac-14 gave both enantiomers of the corresponding carboxylic acid derivatives in the optically pure forms, Δ-fac and Λ-fac-4, -6, and -13, respectively.
Collapse
Affiliation(s)
- Azusa Kanbe
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenta Yokoi
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yasuyuki Yamada
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research
Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- JST,
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Makoto Tsurui
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuichi Kitagawa
- Faculty of
Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of
Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Daiji Ogata
- Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Aoki S, Yokoi K, Hisamatsu Y, Balachandran C, Tamura Y, Tanaka T. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Cham) 2022; 380:36. [PMID: 35948812 DOI: 10.1007/s41061-022-00401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet-triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as "post-complexation functionalization (PCF)." In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue -red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.
Collapse
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan.
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
5
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Yamaguchi K, Yokoi K, Umezawa M, Tsuchiya K, Yamada Y, Aoki S. Design, Synthesis, and Anticancer Activity of Triptycene-Peptide Hybrids that Induce Paraptotic Cell Death in Cancer Cells. Bioconjug Chem 2022; 33:691-717. [PMID: 35404581 DOI: 10.1021/acs.bioconjchem.2c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the design and synthesis of triptycene-peptide hybrids (TPHs), 5, syn-6, and anti-6, which are conjugates of a triptycene core unit with two or three cationic KKKGG peptides (K: lysine and G: glycine) through a C8 alkyl chain. It was discovered that syn-6 and anti-6 induce paraptosis, a type of programmed cell death (PCD), in Jurkat cells (leukemia T-lymphocytes). Mechanistic studies indicate that these TPHs induce the transfer of Ca2+ from the endoplasmic reticulum (ER) to mitochondria, a loss of mitochondrial membrane potential (ΔΨm), tethering of the ER and mitochondria, and cytoplasmic vacuolization in the paraptosis processes.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Masakazu Umezawa
- Faculty of Advanced Engineering, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.,Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
7
|
Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S. Induction of Paraptosis by Cyclometalated Iridium Complex-Peptide Hybrids and CGP37157 via a Mitochondrial Ca 2+ Overload Triggered by Membrane Fusion between Mitochondria and the Endoplasmic Reticulum. Biochemistry 2022; 61:639-655. [PMID: 35363482 PMCID: PMC9022229 DOI: 10.1021/acs.biochem.2c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously reported that a cyclometalated iridium (Ir) complex-peptide hybrid (IPH) 4 functionalized with a cationic KKKGG peptide unit on the 2-phenylpyridine ligand induces paraptosis, a relatively newly found programmed cell death, in cancer cells (Jurkat cells) via the direct transport of calcium (Ca2+) from the endoplasmic reticulum (ER) to mitochondria. Here, we describe that CGP37157, an inhibitor of a mitochondrial sodium (Na+)/Ca2+ exchanger, induces paraptosis in Jurkat cells via intracellular pathways similar to those induced by 4. The findings allow us to suggest that the induction of paraptosis by 4 and CGP37157 is associated with membrane fusion between mitochondria and the ER, subsequent Ca2+ influx from the ER to mitochondria, and a decrease in the mitochondrial membrane potential (ΔΨm). On the contrary, celastrol, a naturally occurring triterpenoid that had been reported as a paraptosis inducer in cancer cells, negligibly induces mitochondria-ER membrane fusion. Consequently, we conclude that the paraptosis induced by 4 and CGP37157 (termed paraptosis II herein) proceeds via a signaling pathway different from that of the previously known paraptosis induced by celastrol, a process that negligibly involves membrane fusion between mitochondria and the ER (termed paraptosis I herein).
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
8
|
Aoki S, Yokoi K, Balachandran C, Hisamatsu Y. Synthesis and Functionalization of Cyclometalated Iridium(III) Complexes by Post-Complexation Functionalization for Biomedical and Material Sciences-Development of Intelligent Molecules Using Metal Complex Building Blocks-. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
9
|
Cyclometalated Iridium(III) Complex-Cationic Peptide Hybrids Trigger Paraptosis in Cancer Cells via an Intracellular Ca 2+ Overload from the Endoplasmic Reticulum and a Decrease in Mitochondrial Membrane Potential. Molecules 2021; 26:molecules26227028. [PMID: 34834120 PMCID: PMC8623854 DOI: 10.3390/molecules26227028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
In our previous paper, we reported that amphiphilic Ir complex–peptide hybrids (IPHs) containing basic peptides such as KK(K)GG (K: lysine, G: glycine) (e.g., ASb-2) exhibited potent anticancer activity against Jurkat cells, with the dead cells showing a strong green emission. Our initial mechanistic studies of this cell death suggest that IPHs would bind to the calcium (Ca2+)–calmodulin (CaM) complex and induce an overload of intracellular Ca2+, resulting in the induction of non-apoptotic programmed cell death. In this work, we conduct a detailed mechanistic study of cell death induced by ASb-2, a typical example of IPHs, and describe how ASb-2 induces paraptotic programmed cell death in a manner similar to that of celastrol, a naturally occurring triterpenoid that is known to function as a paraptosis inducer in cancer cells. It is suggested that ASb-2 (50 µM) induces ER stress and decreases the mitochondrial membrane potential (ΔΨm), thus triggering intracellular signaling pathways and resulting in cytoplasmic vacuolization in Jurkat cells (which is a typical phenomenon of paraptosis), while the change in ΔΨm values is negligibly induced by celastrol and curcumin. Other experimental data imply that both ASb-2 and celastrol induce paraptotic cell death in Jurkat cells, but this induction occurs via different signaling pathways.
Collapse
|
10
|
Haribabu J, Tamura Y, Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Yamada Y, Karvembu R, Aoki S. Synthesis and Anticancer Properties of Bis‐ and Mono(cationic peptide) Hybrids of Cyclometalated Iridium(III) Complexes: Effect of the Number of Peptide Units on Anticancer Activity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jebiti Haribabu
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
- Research Institute of Biomedical Science Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yasuyuki Yamada
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- JST, PRESTO, 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
11
|
Sun Q, Wang Y, Fu Q, Ouyang A, Liu S, Wang Z, Su Z, Song J, Zhang Q, Zhang P, Lu D. Sulfur‐Coordinated Organoiridium(III) Complexes Exert Breast Anticancer Activity via Inhibition of Wnt/β‐Catenin Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Yi Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
- Key Laboratory for Advanced Materials of MOE School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qiuxia Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Shanshan Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Zhongyuan Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Zijie Su
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Jiaxing Song
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Desheng Lu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| |
Collapse
|
12
|
Sun Q, Wang Y, Fu Q, Ouyang A, Liu S, Wang Z, Su Z, Song J, Zhang Q, Zhang P, Lu D. Sulfur-Coordinated Organoiridium(III) Complexes Exert Breast Anticancer Activity via Inhibition of Wnt/β-Catenin Signaling. Angew Chem Int Ed Engl 2021; 60:4841-4848. [PMID: 33244858 DOI: 10.1002/anie.202015009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/12/2022]
Abstract
The sulfur-coordinated organoiridium(III) complexes pbtIrSS and ppyIrSS, which contain C,N and S,S (dithione) chelating ligands, were found to inhibit breast cancer tumorigenesis and metastasis by targeting Wnt/β-catenin signaling for the first time. Treatment with pbtIrSS and ppyIrSS induces the degradation of LRP6, thereby decreasing the protein levels of DVL2, β-catenin and activated β-catenin, resulting in downregulation of Wnt target genes CD44 and survivin. Additionally, pbtIrSS and ppyIrSS can suppress cell migration and invasion of breast cancer cells. Furthermore, both complexes show the ability to inhibit sphere formation and mediate the stemness properties of breast cancer cells. Importantly, pbtIrSS exerts potent anti-tumor and anti-metastasis effects in mouse xenograft models through the blockage of Wnt/β-catenin signaling. Taken together, our results indicate that pbtIrSS has great potential to be developed as a breast cancer therapeutic agent with a novel mechanism.
Collapse
Affiliation(s)
- Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qiuxia Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shanshan Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zhongyuan Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zijie Su
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiaxing Song
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Desheng Lu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
13
|
Advances in novel iridium (III) based complexes for anticancer applications: A review. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Fayad C, Audi H, Khnayzer RS, Daher CF. The anti-cancer effect of series of strained photoactivatable Ru(II) polypyridyl complexes on non-small-cell lung cancer and triple negative breast cancer cells. J Biol Inorg Chem 2020; 26:43-55. [PMID: 33221954 DOI: 10.1007/s00775-020-01835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
Ruthenium complexes have been recently reported as potential chemotherapeutic agents that offer tumor selectivity and low tumor resistance. This study investigates the photochemistry and the effect of four strained photoactivatable polypyridyl ruthenium(II) complexes on non-small-cell lung cancer (A549) and triple negative breast cancer (MDA-MB-231) cells. All four ruthenium(II) complexes, [Ru(bpy)2dmbpy]Cl2 (C1) where (bpy = 2,2'-bipyridine and dmbpy = 6,6'-dimethyl-2,2'-bipyridine), [Ru(phen)2dmbpy]Cl2 (C2) where (phen = 1,10-phenanthroline), [Ru(dpphen)2dmbpy]Cl2 (C3) (where dpphen = 4,7-diphenyl-1,10-phenanthroline) and [Ru(BPS)2dmbpy]Na2 (C4) where (BPS = bathophenanthroline disulfonate) eject the dmbpy ligand upon activation by blue light. Determination of the octanol-water partition coefficient (log P) revealed that C3 was the only lipophilic complex (log P = 0.42). LC-MS/MS studies showed that C3 presented the highest cellular uptake. The cytotoxic effect of the complexes was evaluated with and without blue light activation using WST-1 kit. Data indicated that C3 exhibited the highest cytotoxicity after 72 h (MDA-MB-231, IC50 = 0.73 µM; A549, IC50 = 1.26 µM) of treatment. The phototoxicity indices of C3 were 6.56 and 4.64 for MDA-MB-230 and A549, respectively. Upon light activation, C3 caused significant ROS production and induced apoptosis in MDA-MB-231 cells as shown by flow cytometry. It also significantly increased Bax/Bcl2 ratio and PERK levels without affecting caspase-3 expression. C3 exhibited poor dark toxicity (IC50 = 74 μM) on rat mesenchymal stem cells (MSCs). In conclusion, the physical property of the complexes dictated by the variable ancillary ligands influenced cellular uptake and cytotoxicity. C3 may be considered a promising selective photoactivatable chemotherapeutic agent that induces ROS production and apoptosis.
Collapse
Affiliation(s)
- Christelle Fayad
- Natural Sciences Department, Lebanese American University, Byblos, Lebanon
| | - Hassib Audi
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, Lebanon.
| | - Costantine F Daher
- Natural Sciences Department, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
15
|
Kazama A, Imai Y, Okayasu Y, Yamada Y, Yuasa J, Aoki S. Design and Synthesis of Cyclometalated Iridium(III) Complexes-Chromophore Hybrids that Exhibit Long-Emission Lifetimes Based on a Reversible Electronic Energy Transfer Mechanism. Inorg Chem 2020; 59:6905-6922. [PMID: 32352765 DOI: 10.1021/acs.inorgchem.0c00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the design and synthesis of triscyclometalated iridium (Ir) complexes that contain aryloxy groups at the end of diamino linkers, which exhibit an extraordinarily long-emission lifetime, and were prepared by regioselective substitution reactions of fac-tris-homoleptic cyclometalated Ir complexes, fac-Ir(tpy)3 (tpy = 2-(4'-tolyl)pyridine). It was found that the Ir(tpy)3 complex, equipped with approximately one to six 6-N,N-dimethylamino-2-naphthoic acid (DMANA) groups through the appropriate alkyl linkers, exhibited remarkably long-emission lifetimes of up to 216 μs in DMSO/H2O at room temperature through a reversible electronic energy transfer effect between the Ir complex core and the organic chromophore moieties; however, under the same conditions, the lifetime of fac-Ir(tpy)3 was 1.4 μs. Regarding the mechanistic aspects, the relationship between the emission lifetimes of the Ir complexes and the structures and numbers of the conjugated chromophores, linker lengths, solvents, positions of the chromophores on the Ir(tpy)3 core, and related items are discussed.
Collapse
Affiliation(s)
- Ayami Kazama
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuki Imai
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junpei Yuasa
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
16
|
Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Mitrić A, Aoki S. Amphiphilic Cationic Triscyclometalated Iridium(III) Complex-Peptide Hybrids Induce Paraptosis-like Cell Death of Cancer Cells via an Intracellular Ca 2+-Dependent Pathway. ACS OMEGA 2020; 5:6983-7001. [PMID: 32258934 PMCID: PMC7114882 DOI: 10.1021/acsomega.0c00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
We report on the design and synthesis of a green-emitting iridium complex-peptide hybrid (IPH) 4, which has an electron-donating hydroxyacetic acid (glycolic acid) moiety between the Ir core and the peptide part. It was found that 4 is selectively cytotoxic against cancer cells, and the dead cells showed a green emission. Mechanistic studies of cell death indicate that 4 induces a paraptosis-like cell death through the increase in mitochondrial Ca2+ concentrations via direct Ca2+ transfer from ER to mitochondria, the loss of mitochondrial membrane potential (ΔΨm), and the vacuolization of cytoplasm and intracellular organelle. Although typical paraptosis and/or autophagy markers were upregulated by 4 through the mitogen-activated protein kinase (MAPK) signaling pathway, as confirmed by Western blot analysis, autophagy is not the main pathway in 4-induced cell death. The degradation of actin, which consists of a cytoskeleton, is also induced by high concentrations of Ca2+, as evidenced by costaining experiments using a specific probe. These results will be presented and discussed.
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Aleksandra Mitrić
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
- Faculty of Technology and Metallurgy, University of Belgrade, 4 Karnegijeva Street, Belgrade 11000, Serbia
| | - Shin Aoki
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| |
Collapse
|
17
|
Bai L, Fei WD, Gu YY, He M, Du F, Zhang WY, Yang LL, Liu YJ. Liposomes encapsulated iridium(III) polypyridyl complexes enhance anticancer activity in vitro and in vivo. J Inorg Biochem 2020; 205:111014. [PMID: 32044395 DOI: 10.1016/j.jinorgbio.2020.111014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Three iridium(III) complexes [Ir(ppy)2(CPIP)](PF6) (Ir-1, ppy = 2-phenylpyridine, CPIP = 2-(4-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(ppy)2(DCPIP)](PF6) (Ir-2, DCPIP = 2-(3,4-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(ppy)2(TCPIP)](PF6) (Ir-3, TCPIP = 2,3,5-trichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The complexes Ir-1, Ir-2 and Ir-3 were encapsulated in liposomes to form Ir-1-Lipo, Ir-2-Lipo and Ir-3-Lipo. Morphology, size distribution, and zeta potential of liposomes were examined by transmission electron microscopy (TEM) and Zetasizer. The cytotoxic activity in vitro of Ir-1, Ir-2 and Ir-3 against cancer A549, HTC-116, HepG2, BEL-7402, Eca-109, B16, HeLa SGC-7901 and normal NIH3T3 cells was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. Ir-2 and Ir-3 show no cytotoxic activity against the selected cancer cells, and Ir-1 displays moderate cytotoxic effect on the cell growth in A549 cells. However, Ir-1, Ir-2 and Ir-3 were encapsulated in liposomes, the cytotoxic activity was greatly enhanced. In particular, Ir-1-Lipo and Ir-2-Lipo can effectively inhibit the cell growth in A549 cells with a low IC50 value of 3.1 ± 0.3 and 1.2 ± 0.4 μM. The apoptosis was assayed by flow cytometry. Ir-1, Ir-2 and Ir-3 reveal weak apoptotic effect, whereas Ir-1-Lipo, Ir-2-Lipo and Ir-3-Lipo induce an apoptotic percentage of 55.6%, 69.3% and 16.7% in A549 cells, respectively. Specially, in the assay of antitumor activity in vivo, the inhibiting percentage of tumor growth induced by Ir-2 is 27.65%, while inhibiting percentage of tumor growth caused by Ir-2-Lipo is 57.45%. Obviously, the liposomes can enhance anticancer activity in vitro and in vivo compared with the complexes. The results show that the iridium(III) complexes encapsulated liposomes induce apoptosis in A549 cells through ROS-mediated lysosome-mitochondria dysfunction pathway and target the microtubules.
Collapse
Affiliation(s)
- Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wei-Dong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin-Lin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou 510000, PR China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Design, synthesis, and anticancer activity of iridium(III) complex-peptide hybrids that contain hydrophobic acyl groups at the N-terminus of the peptide units. J Inorg Biochem 2019; 199:110785. [DOI: 10.1016/j.jinorgbio.2019.110785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/02/2023]
|
19
|
The induction of apoptosis in BEL-7402 cells by an iridium(III) complex through lysosome–mitochondria pathway. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Connell TU, Donnelly PS. Labelling proteins and peptides with phosphorescent d6 transition metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Masum AA, Yokoi K, Hisamatsu Y, Naito K, Shashni B, Aoki S. Design and synthesis of a luminescent iridium complex-peptide hybrid (IPH) that detects cancer cells and induces their apoptosis. Bioorg Med Chem 2018; 26:4804-4816. [PMID: 30177492 DOI: 10.1016/j.bmc.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 08/11/2018] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) triggers the cell-extrinsic apoptosis pathway by complexation with its signaling receptors such as death receptors (DR4 and DR5). TRAIL is a C3-symmetric type II transmembrane protein, consists of three monomeric units. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) also possess a C3-symmetric structure and are known to have excellent luminescence properties. In this study, we report on the design and synthesis of a C3-symmetric and luminescent Ir complex-peptide hybrid (IPH), which contains a cyclic peptide that had been reported to bind to death receptor (DR5). The results of MTT assay of Jurkat, K562 and Molt-4 cells with IPH and co-staining experiments with IPH and an anti-DR5 antibody indicate that IPH binds to DR5 and induces apoptosis in a manner parallel to the DR5 expression level. Mechanistic studies of cell death suggest that apoptosis and necrosis-like cell death are differentiated by the position of the hydrophilic part that connects Ir complex and the peptide units. These findings suggest that IPHs could be a promising tool for controlling apoptosis and necrosis by activation of the extra-and intracellular cell death pathway and to develop new anticancer drugs that detect cancer cells and induce their cell death.
Collapse
Affiliation(s)
- Abdullah-Al Masum
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kana Naito
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Babita Shashni
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
22
|
Mukhopadhyay S, Singh RS, Paitandi RP, Sharma G, Koch B, Pandey DS. Influence of substituents on DNA and protein binding of cyclometalated Ir(iii) complexes and anticancer activity. Dalton Trans 2018. [PMID: 28640302 DOI: 10.1039/c7dt01015j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Synthesis of terpyridyl based ligands 3-([2,2':6',2''-terpyridin]-4'-yl)-7-methoxy-2-(methylthio)-quinolone, (L1); 3-([2,2':6',2''-terpyridin]-4'-yl)-6-methoxyquinolin-2(1H)-one, (L2); 3-([2,2'-:6',2''-terpyridin]-4'-yl)-6-methylquinolin-2(1H)-one (L3) and cyclometalated iridium(iii) complexes [[Ir(ppy)2L1]+PF6- (1), [Ir(ppy)2L2]+PF6- (2), [Ir(ppy)2L3]+PF6- (3) (2-phenylpyridine = Hppy)] involving these ligands has been described. The ligands L1-L3 and complexes 1-3 have been thoroughly characterized by elemental analyses, spectral studies (IR, 1H, 13C NMR, UV/vis and fluorescence) ESI-MS, and the structure of 3 has been unambiguously authenticated by single crystal X-ray analyses. UV/vis, fluorescence and circular dichroism spectroscopic studies showed rather efficient binding of 1 with CT-DNA (calf thymus DNA) and BSA (bovine serum albumin) relative to 2 and 3. Molecular docking studies unveiled binding of 1-3 with minor groove of CT-DNA via van der Waal's forces and electrostatically with the hydrophobic moiety of HSA (human serum albumin). The ligands and complexes exhibited moderate cytotoxicity towards MDA-MB-231 (breast cancer cell line) and significant influence on HeLa (cervical cancer cell line) cells. Cytotoxicity, morphological changes, and apoptosis have been followed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) assay, Hoechst 33342/PI (PI = propidium iodide) staining, cell cycle analysis by FACS (fluorescence activated cell sorting), and ROS (reactive oxygen species) generation by DCFH-DA (dichlorodihydrofluorescein diacetate) dye. Confocal microscopy images revealed that the drug efficiently initiates apoptosis in the cell cytosol. The IC50 values showed superior cytotoxicity of 1-3 against the HeLa cell line relative to cisplatin, and their ability to induce apoptosis is in the order 1 > 2 > 3.
Collapse
Affiliation(s)
- Sujay Mukhopadhyay
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, U.P., India.
| | | | | | | | | | | |
Collapse
|
23
|
Huang C, Sheth S, Li M, Ran G, Song Q. Rapid and selective luminescent sensing of allergenic gluten by highly phosphorescent switch-on probe. Talanta 2018; 190:292-297. [PMID: 30172512 DOI: 10.1016/j.talanta.2018.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/20/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
First time the luminescent switch-on probe using novel water-soluble cyclometallated iridium complex (Ir-dc) has been developed for sensitive and selective detection of gluten in the presence of several interfering elements. Linear concentration range of gluten is obtained from 5 to 200 µg/mL with a limit of detection 2.6 µg/mL. The Ir-dc complex responded to the broad pH range which is advantageous for the detection of gluten in various food samples. Additionally, It has been successfully employed for the detection of gluten in commercial food samples of wheat flour and oats with highest recovery values, indicating applicability of Ir-dc for practical usage.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Sujitraj Sheth
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mengyuan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
24
|
Luminescent Iridium Complex-Peptide Hybrids (IPHs) for Therapeutics of Cancer: Design and Synthesis of IPHs for Detection of Cancer Cells and Induction of Their Necrosis-Type Cell Death. Bioinorg Chem Appl 2018; 2018:7578965. [PMID: 30154833 PMCID: PMC6092981 DOI: 10.1155/2018/7578965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Death receptors (DR4 and DR5) offer attractive targets for cancer treatment because cancer cell death can be induced by apoptotic signal upon binding of death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with death receptors. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) possess a C3-symmetric structure like TRAIL and exhibit excellent luminescence properties. Therefore, cyclometalated Ir complexes functionalized with DR-binding peptide motifs would be potent TRAIL mimics to detect cancer cells and induce their cell death. In this study, we report on the design and synthesis of C3-symmetric and luminescent Ir complex-peptide hybrids (IPHs), which possess cyclic peptide that had been reported to bind DR5. The results of 27 MHz quartz-crystal microbalance (QCM) measurements of DR5 with IPHs and costaining experiments of IPHs and anti-DR5 antibody, suggest that IPHs bind with DR5 and undergo internalization into cytoplasm, possibly via endocytosis. It was also found that IPHs induce slow cell death of these cancer cells in a parallel manner to the DR5 expression level. These results indicate that IPHs may offer a promising tool as artificial luminescent mimics of death ligands to develop a new category of anticancer agents that detect and kill cancer cells.
Collapse
|
25
|
Tamura Y, Hisamatsu Y, Kazama A, Yoza K, Sato K, Kuroda R, Aoki S. Stereospecific Synthesis of Tris-heteroleptic Tris-cyclometalated Iridium(III) Complexes via Different Heteroleptic Halogen-Bridged Iridium(III) Dimers and Their Photophysical Properties. Inorg Chem 2018; 57:4571-4589. [DOI: 10.1021/acs.inorgchem.8b00323] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayami Kazama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenji Yoza
- Bruker AXS K.K., 3-9 Moriya-cho, Yokohama, Kanagawa 221-0022, Japan
| | - Kyouhei Sato
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Medical-Science-Engineering Cooperation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Imaging Frontier Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
26
|
|
27
|
Bhat SS, Revankar VK, Pinjari RV, Naveen S, Lokanath NK, Kumbar V, Bhat K, Kokare DG. Phosphorescent cyclometalated iridium(iii) complexes: synthesis, photophysics, DNA interaction, cellular internalization, and cytotoxic activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj03390k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphorescent cyclometalated quinoline-appended iridium(iii) complexes undergo rapid cellular internalization and accumulate throughout the cell.
Collapse
Affiliation(s)
- Satish S. Bhat
- Department of Chemistry
- Karnatak University
- Dharwad-580003
- India
| | | | - Rahul V. Pinjari
- School of Chemical Science
- Swami Ramanand Teerth
- Marathwada University
- Nanded
- India
| | - S. Naveen
- Department of Physics
- School of Engineering and Technology
- Jain University
- Bangalore 562112
- India
| | - N. K. Lokanath
- Department of Studies in Physics
- University of Mysore
- Manasagangotri
- India
| | - Vijay Kumbar
- Maratha Mandal's Central Research Laboratory
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| | - Kishore Bhat
- Maratha Mandal's Central Research Laboratory
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| | | |
Collapse
|
28
|
Yokoi K, Hisamatsu Y, Naito K, Aoki S. Design, Synthesis, and Anticancer Activities of Cyclometalated Tris(2-phenylpyridine)iridium(III) Complexes with Cationic Peptides at the 4′-Position of the 2-Phenylpyridine Ligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641Yamazaki 278-8510 Noda Chiba Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641Yamazaki 278-8510 Noda Chiba Japan
| | - Kana Naito
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641Yamazaki 278-8510 Noda Chiba Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641Yamazaki 278-8510 Noda Chiba Japan
- Division of Medical-Science-Engineering Cooperation; Research Institute for Science and Technology; Tokyo University of Science; 2641Yamazaki 278-8510 Noda Chiba Japan
- Imaging Frontier Center; Research Institute for Science and Technology; Tokyo University of Science; 2641Yamazaki 278-8510 Noda Chiba Japan
| |
Collapse
|
29
|
Hisamatsu Y, Kumar S, Aoki S. Design and Synthesis of Tris-Heteroleptic Cyclometalated Iridium(III) Complexes Consisting of Three Different Nonsymmetric Ligands Based on Ligand-Selective Electrophilic Reactions via Interligand HOMO Hopping Phenomena. Inorg Chem 2016; 56:886-899. [DOI: 10.1021/acs.inorgchem.6b02519] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yosuke Hisamatsu
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sarvendra Kumar
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Sciences, ‡Division of Medical Science-Engineering
Cooperation, Research Institute for Science and Technology, and §Imaging Frontier
Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
30
|
Tamura Y, Hisamatsu Y, Kumar S, Itoh T, Sato K, Kuroda R, Aoki S. Efficient Synthesis of Tris-Heteroleptic Iridium(III) Complexes Based on the Zn2+-Promoted Degradation of Tris-Cyclometalated Iridium(III) Complexes and Their Photophysical Properties. Inorg Chem 2016; 56:812-833. [DOI: 10.1021/acs.inorgchem.6b02270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuichi Tamura
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sarvendra Kumar
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Taiki Itoh
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kyouhei Sato
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reiko Kuroda
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|