1
|
Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. J Transl Med 2024; 22:941. [PMID: 39407249 PMCID: PMC11475785 DOI: 10.1186/s12967-024-05752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong medical University, zhanjiang, 524000, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Qian K, Gao S, Jiang Z, Ding Q, Cheng Z. Recent advances in mitochondria-targeting theranostic agents. EXPLORATION (BEIJING, CHINA) 2024; 4:20230063. [PMID: 39175881 PMCID: PMC11335472 DOI: 10.1002/exp.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
For its vital role in maintaining cellular activity and survival, mitochondrion is highly involved in various diseases, and several strategies to target mitochondria have been developed for specific imaging and treatment. Among these approaches, theranostic may realize both diagnosis and therapy with one integrated material, benefiting the simplification of treatment process and candidate drug evaluation. A variety of mitochondria-targeting theranostic agents have been designed based on the differential structure and composition of mitochondria, which enable more precise localization within cellular mitochondria at disease sites, facilitating the unveiling of pathological information while concurrently performing therapeutic interventions. Here, progress of mitochondria-targeting theranostic materials reported in recent years along with background information on mitochondria-targeting and therapy have been briefly summarized, determining to deliver updated status and design ideas in this field to readers.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shu Gao
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhaoning Jiang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Qihang Ding
- Department of ChemistryKorea UniversitySeoulRepublic of Korea
| | - Zhen Cheng
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
3
|
Ibrahim MK, Haria A, Mehta NV, Degani MS. Antimicrobial potential of quaternary phosphonium salt compounds: a review. Future Med Chem 2023; 15:2113-2141. [PMID: 37929337 DOI: 10.4155/fmc-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Given that mitochondrial dysregulation is a biomarker of many cancers, cationic quaternary phosphonium salt (QPS) conjugation is a widely utilized strategy for anticancer drug design. QPS-conjugated compounds exhibit greater cell permeation and accumulation in negatively charged mitochondria, and thus, show enhanced activity. Phylogenetic similarities between mitochondria and bacteria have provided a rationale for exploring the antibacterial properties of mitochondria-targeted compounds. Additionally, due to the importance of mitochondria in the survival of pathogenic microbes, including fungi and parasites, this strategy can be extended to these organisms as well. This review examines recent literature on the antimicrobial activities of various QPS-conjugated compounds and provides future directions for exploring the medicinal chemistry of these compounds.
Collapse
Affiliation(s)
- Mahin K Ibrahim
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Akash Haria
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Namrashee V Mehta
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
4
|
Rokitskaya TI, Khailova LS, Korshunova GA, Antonenko YN. Efficiency of mitochondrial uncoupling by modified butyltriphenylphosphonium cations and fatty acids correlates with lipophilicity of cations: Protonophoric vs leakage mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184183. [PMID: 37286154 DOI: 10.1016/j.bbamem.2023.184183] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
In order to determine the share of protonophoric activity in the uncoupling action of lipophilic cations a number of analogues of butyltriphenylphosphonium with substitutions in phenyl rings (C4TPP-X) were studied on isolated rat liver mitochondria and model lipid membranes. An increase in the rate of respiration and a decrease in the membrane potential of isolated mitochondria were observed for all the studied cations, the efficiency of these processes was significantly enhanced in the presence of fatty acids and correlated with the octanol-water partition coefficient of the cations. The ability of C4TPP-X cations to induce proton transport across the lipid membrane of liposomes loaded with a pH-sensitive fluorescent dye increased also with their lipophilicity and depended on the presence of palmitic acid in the liposome membrane. Of all the cations, only butyl[tri(3,5-dimethylphenyl)]phosphonium (C4TPP-diMe) was able to induce proton transport by the mechanism of formation of a cation-fatty acid ion pair on planar bilayer lipid membranes and liposomes. The rate of oxygen consumption by mitochondria in the presence of C4TPP-diMe increased to the maximum values corresponding to conventional uncouplers; for all other cations the maximum uncoupling rates were significantly lower. We assume that the studied cations of the C4TPP-X series, with the exception of C4TPP-diMe at low concentrations, cause nonspecific leak of ions through lipid model and biological membranes which is significantly enhanced in the presence of fatty acids.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Nguyen Cao TG, Truong Hoang Q, Kang JH, Kang SJ, Ravichandran V, Rhee WJ, Lee M, Ko YT, Shim MS. Bioreducible exosomes encapsulating glycolysis inhibitors potentiate mitochondria-targeted sonodynamic cancer therapy via cancer-targeted drug release and cellular energy depletion. Biomaterials 2023; 301:122242. [PMID: 37473534 DOI: 10.1016/j.biomaterials.2023.122242] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Nanocarrier-assisted sonodynamic therapy (SDT) has shown great potential for the effective and targeted treatment of deep-seated tumors by overcoming the critical limitations of sonosensitizers. However, in vivo SDT using nanocarriers is still constrained by their intrinsic toxicity and nonspecific cargo release. In this study, we developed bioreducible exosomes for the safe and tumor-specific delivery of mitochondria-targeting sonosensitizers [triphenylphosphonium-conjugated chlorin e6 (T-Ce6)] and glycolysis inhibitors (FX11). Redox-cleavable diselenide linker-bearing lipids were embedded into exosomes to trigger drug release in response to overexpressed glutathione in the tumor microenvironment. Bioreducible exosomes facilitate the cytoplasmic release of their payload in the reducing environment of tumor cells. They significantly enhance drug release and sonodynamic effects when irradiated with ultrasound (US). The mitochondria-targeted accumulation of T-Ce6 efficiently damaged the mitochondria of the cells under US irradiation, accelerating apoptotic cell death. FX11 substantially inhibited cellular energy metabolism, potentiating the antitumor efficacy of mitochondria-targeted SDT. Bioreducible exosomes effectively suppressed tumor growth in mice without significant systemic toxicity, via a combination of mitochondria-targeted SDT and energy metabolism-targeted therapy. This study offers new insights into the use of dual stimuli-responsive exosomes encapsulating sonosensitizers for safe and targeted sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Vasanthan Ravichandran
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea; Department of Internal Medicine, Ewha Womans University Medical Center, Seoul, 07804, Republic of Korea.
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
6
|
Ong HC, Coimbra JTS, Ramos MJ, Xing B, Fernandes PA, García F. Beyond the TPP + "gold standard": a new generation mitochondrial delivery vector based on extended PN frameworks. Chem Sci 2023; 14:4126-4133. [PMID: 37063789 PMCID: PMC10094279 DOI: 10.1039/d2sc06508h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.
Collapse
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - João T S Coimbra
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Pedro A Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo Avda Julian Claveria 8 33006 Asturias Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
7
|
Gruenwald H, Kerns RJ. Stability of Phenyl-Modified Triphenylphosphonium Conjugates and Interactions with DTPA. ACS OMEGA 2022; 7:48332-48339. [PMID: 36591157 PMCID: PMC9798776 DOI: 10.1021/acsomega.2c06525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Triphenylphosphonium (TPP+) conjugates are effective in targeting drugs and probes to the mitochondria due to their lipophilic character that allows them to readily cross membranes and their large cationic radius that enables mitochondrial uptake because of the mitochondria's negative membrane potential. TPP+ conjugates, while effectively sequestered by the mitochondria, are also known to uncouple oxidative phosphorylation (OXPHOS) and depolarize the mitochondrial membrane. xTPP+ conjugates with para-substitutions of functional groups on the phenyl rings of the TPP+ moiety display different levels of dose-mediated cytotoxicity due to differing potencies of uncoupling. xTPP+ conjugates having a para CF3 group substituted on the phenyl rings have been shown to afford significantly reduced uncoupling potency. In the present study, the analysis of a CF3-TPP+ conjugate with a decyl linker for stability revealed instability specific to the presence of DMSO in aqueous alkaline buffer. It is also demonstrated that the metal chelator, DTPA, forms a noncovalent protective complex with TPP+ moieties and prevents degradation of the CF3-TPP+ conjugate in aqueous DMSO. The stability of different xTPP+ conjugates and their interactions with DTPA are reported.
Collapse
|
8
|
Terekhova NV, Lyubina AP, Voloshina AD, Sapunova AS, Khayarov KR, Islamov DR, Usachev KS, Evtugyn VG, Tatarinov DA, Mironov VF. Synthesis, biological evaluation and structure-activity relationship of 2-(2-hydroxyaryl)alkenylphosphonium salts with potency as anti-MRSA agents. Bioorg Chem 2022; 127:106030. [PMID: 35870414 DOI: 10.1016/j.bioorg.2022.106030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Here we report the synthesis, in vitro antimicrobial activity, preliminary toxicity and mechanism study of a new series of 2-(2-hydroxyaryl)alkenylphosphonium salts with the variation of phosphonium moiety obtained by a two-step synthetic method from phosphine oxides. The salts showed pronounced activity against Gram-positive bacteria, including MRSA strains, and some fungi. Mechanism of action against S. aureus was studied by CV test, TEM and proteomic assay. No cell wall integrity loss was observed while proteomic assay results suggested interference in different metabolic processes of S. aureus. For this series, lipophilicity was determined as a key factor for the inhibition of Gram-positive bacteria growth and S. aureus killing. Biological properties of methylated derivatives were notably different with manifested action against Gram-negative bacteria.
Collapse
Affiliation(s)
- Natalia V Terekhova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Anastasiya S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Khasan R Khayarov
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russian Federation
| | - Daut R Islamov
- Laboratory for Structural Studies of Biomacromolecules, FRC Kazan Scientific Center of RAS, Lobachevskogo Str., 2/31, Kazan 420111, Russian Federation
| | - Konstantin S Usachev
- Laboratory for Structural Studies of Biomacromolecules, FRC Kazan Scientific Center of RAS, Lobachevskogo Str., 2/31, Kazan 420111, Russian Federation
| | - Vladimir G Evtugyn
- Interdisciplinary center for Analytical microscopy, Kazan Federal University, Kremlevskaya str. 18, Kazan 420008, Russian Federation
| | - Dmitry A Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation; Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russian Federation.
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russian Federation
| |
Collapse
|
9
|
Huang D, Liu Q, Zhang M, Guo Y, Cui Z, Li T, Luo D, Xu B, Huang C, Guo J, Tam KY, Zhang M, Zhang SL, He Y. A Mitochondria-Targeted Phenylbutyric Acid Prodrug Confers Drastically Improved Anticancer Activities. J Med Chem 2022; 65:9955-9973. [PMID: 35818137 DOI: 10.1021/acs.jmedchem.2c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phenylbutyric acid (PBA) has been reported as a dual inhibitor of pyruvate dehydrogenase kinases (PDKs) and histone deacetylases (HDACs), exhibiting anticancer effects. However, the low membrane permeability and poor cellular uptake limit its access to the target organelle, resulting in weak potencies against the intended targets. Herein, we report the design and identification of a novel 4-CF3-phenyl triphenylphosphonium-based PBA conjugate (53) with improved in vitro and in vivo anticancer activities. Compound 53 exhibited an IC50 value of 2.22 μM against A375 cells, outperforming the parent drug PBA by about 4000-fold. In the A375 cell-derived xenograft mouse model, 53 reduced the tumor growth by 76% at a dose of 40 mg/kg, while PBA only reduced the tumor growth by 10% at a dose of 80 mg/kg. On the basis of these results, 53 may be considered for further preclinical evaluations for cancer therapy.
Collapse
Affiliation(s)
- Ding Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Qingwang Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Zhiying Cui
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Tao Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Dong Luo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Biao Xu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chao Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Jian Guo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Min Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
10
|
Yaqoob MD, Xu L, Li C, Leong MML, Xu DD. Targeting Mitochondria for Cancer Photodynamic Therapy. Photodiagnosis Photodyn Ther 2022; 38:102830. [PMID: 35341979 DOI: 10.1016/j.pdpdt.2022.102830] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Cancer remains a health-related concern globally from the ancient times till to date. The application of light to be used as therapeutic potential/agent has been used for several thousands of years. Photodynamic therapy (PDT) is a modern, non-invasive therapeutic modality for the treatment of various infections by bacteria, fungi, and viruses. Mitochondria are subcellular, double-membrane organelles that have the role in cancer and anticancer therapy. Mitochondria play a key role in regulation of apoptosis and these organelles produce most of the cell's energy which enhance its targeting objective. The role of mitochondria in anticancer approach is achieved by targeting its metabolism (glycolysis and TCA cycle) and apoptotic and ROS homeostasis. The role of mitochondria-targeted cancer therapies in photodynamic therapy have proven to be more effective than other similar non-targeting techniques. Particularly in PDT, mitochondria-targeting sensitizers are important as they have a crucial role in overcoming the hypoxia factor, resulting in high efficacy. IR-730 and IR-Pyr are the indocyine derivatives photosensitizers that play a crucial role in targeting mitochondria because of their better photostability during laser irradiation. Clinical and pre-clinical trials are going on this approach to target different solid tumors using mitochondrial targeted photodynamic therapy.
Collapse
Affiliation(s)
- Muhammad Danish Yaqoob
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China; Binzhou Medical University, Yantai, Shandong Province, PR China
| | - Long Xu
- Department of Radiology, Central Hospital of Dongying District, Dongying, Shandong, PR China
| | - Chuanfeng Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Microbiology, Harvard Medical School, Harvard University, Boston, MA, United States.
| | - Dan Dan Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
11
|
Rokitskaya TI, Aleksandrova EV, Korshunova GA, Khailova LS, Tashlitsky VN, Luzhkov VB, Antonenko YN. Membrane Permeability of Modified Butyltriphenylphosphonium Cations. J Phys Chem B 2022; 126:412-422. [PMID: 34994564 DOI: 10.1021/acs.jpcb.1c08135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alkyltriphenylphosphonium (TPP) group is the most widely used vector targeted to mitochondria. Previously, the length of the alkyl linker was varied as well as structural modifications in the TPP phenyl rings to obtain the optimal therapeutic effect of a pharmacophore conjugated with a lipophilic cation. In the present work, we synthesized butyltriphenylphosphonium cations halogenated and methylated in phenyl rings (C4TPP-X) and measured electrical current through a planar lipid bilayer in the presence of C4TPP-X. The permeability of C4TPP-X varied in the range of 6 orders of magnitude and correlates well with the previously measured translocation rate constant for dodecyltriphenylphosphonium analogues. The partition coefficient of the butyltriphenylphosphonium analogues obtained by calculating the difference in the free energy of cation solvation in water and octane using quantum chemical methods correlates well with the permeability values. Using an ion-selective electrode, a lower degree of accumulation of analogues with halogenated phenyl groups was found on isolated mitochondria of rat liver, which is in agreement with their permeability decrease. Our results indicate the translocation of the butyltriphenylphosphonium cations across the hydrophobic membrane core as rate-limiting stage in the permeability process rather than their binding/release to/from the membrane.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor B Luzhkov
- Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, acad. Semenov av. 1, Chernogolovka, Moscow Region 142432, Russia.,Department of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
12
|
Wang J, Liu X, Zhang X, Du S, Han X, Li JQ, Xiao Y, Xu Z, Wu Q, Xu L, Qin Z. Fungicidal Action of the Triphenylphosphonium-Driven Succinate Dehydrogenase Inhibitors Is Mediated by Reactive Oxygen Species and Suggests an Effective Resistance Management Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:111-123. [PMID: 34878279 DOI: 10.1021/acs.jafc.1c05784] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase (SDH) is an effective target of SDH inhibitor (SDHI) fungicides which received more and more attention in recent years. However, there is no good solution to their rapidly growing drug resistance caused by frequent use. In this study, three triphenylphosphonium (TPP)-conjugated boscalid analogues were synthesized and tested for antifungal activities. They all, especially 2c, exhibited enhanced fungicidal activity and broader spectra compared to boscalid. The action mechanism study revealed that 2c was also an SDH inhibitor acting on the Qp site. However, the rapid accumulation of 2c in mitochondria because of TPP-targeting triggered reactive oxygen species burst in mitochondria, resulting in irreversible damage to the mitochondrial structure and function. Thus, 2c made the fungicidal activity output mode changing from mainly relying on ATP production inhibition (as traditional SDHIs) to significant damage of the cell structure and functions. This mechanism change made it difficult for plant pathogenic fungi to develop resistance to 2c and its analogues, which was of great significance for the increasingly challenging management of field resistance to SDHI fungicides.
Collapse
Affiliation(s)
- Jiayao Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xuelian Liu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xueqin Zhang
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Shijie Du
- College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou Province 554300, China
| | - Xiaoqiang Han
- College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jia-Qi Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhihong Xu
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| | - Qinglai Wu
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Ong HC, Coimbra JTS, Kwek G, Ramos MJ, Xing B, Fernandes PA, García F. Alkyl vs. aryl modifications: a comparative study on modular modifications of triphenylphosphonium mitochondrial vectors. RSC Chem Biol 2021; 2:1643-1650. [PMID: 34977579 PMCID: PMC8637833 DOI: 10.1039/d1cb00099c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022] Open
Abstract
Triphenylphosphonium (TPP+) moieties are commonly conjugated to drug molecules to confer mitochondrial selectivity due to their positive charge and high lipophilicity. Although optimisation of lipophilicity can be achieved by modifying the length of the alkyl linkers between the TPP+ moiety and the drug molecule, it is not always possible. While methylation of the TPP+ moiety is a viable alternative to increase lipophilicity and mitochondrial accumulation, there are no studies comparing these two separate modular approaches. Thus, we have systematically designed, synthesised and tested a range of TPP+ molecules with varying alkyl chain lengths and degree of aryl methylation to compare the two modular methodologies for modulating lipophilicity. The ability of aryl/alkyl modified TPP+ to deliver cargo to the mitochondria was also evaluated by confocal imaging with a TPP+-conjugated fluorescein-based fluorophore. Furthermore, we have employed molecular dynamics simulations to understand the translocation of these molecules through biological membrane model systems. These results provide further insights into the thermodynamics of this process and the effect of alkyl and aryl modular modifications. Alkyl chain extension and aryl methylation can be employed to enhance mitochondrial uptake in triphenylphosphonium vectors. Here we compare these complementary strategies and their mitochondrial-targeting effects using a modular synthetic approach.![]()
Collapse
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Portugal
| | - Germain Kwek
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Portugal
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Portugal
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
14
|
Mukherjee T, Regar R, Soppina V, Kanvah S. Stress-responsive rhodamine bioconjugates for membrane-potential-independent mitochondrial live-cell imaging and tracking. Org Biomol Chem 2021; 19:10090-10096. [PMID: 34610076 DOI: 10.1039/d1ob01741a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 'powerhouses' of cell, mitochondria have seen an upsurge of interest in investigations pertaining to the imaging and mapping of physiological processes. By utilizing sterol-modified rhodamine, we have performed the live-cell imaging of mitochondria without dependence on a membrane potential. The sterol probes are highly biocompatible, and they can track the mitochondrial live-cell dynamics in a background-free manner with improved brightness and impressive contrast. This is the first attempt to study the stress response using a direct fluorescence readout with bio-conjugates of rhodamine inside mitochondria. The results pave the way for developing different sterol markers for understanding cellular responses and function.
Collapse
Affiliation(s)
- Tarushyam Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Ramprasad Regar
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Sriram Kanvah
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| |
Collapse
|
15
|
Abstract
Fluorescent tools have emerged as an important tool for studying the distinct chemical microenvironments of organelles, due to their high specificity and ability to be used in non-destructive, live cellular studies. These tools fall largely in two categories: exogenous fluorescent dyes, or endogenous labels such as genetically encoded fluorescent proteins. In both cases, the probe must be targeted to the organelle of interest. To date, many organelle-targeted fluorescent tools have been reported and used to uncover new information about processes that underpin health and disease. However, the majority of these tools only apply a handful of targeting groups, and less-studied organelles have few robust targeting strategies. While the development of new, robust strategies is difficult, it is essential to develop such strategies to allow for the development of new tools and broadening the effective study of organelles. This review aims to provide a comprehensive overview of the major targeting strategies for both endogenous and exogenous fluorescent cargo, outlining the specific challenges for targeting each organelle type and as well as new developments in the field.
Collapse
Affiliation(s)
- Jiarun Lin
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| | - Kylie Yang
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 638] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
17
|
Terekhova N, Khailova LS, Rokitskaya TI, Nazarov PA, Islamov DR, Usachev KS, Tatarinov DA, Mironov VF, Kotova EA, Antonenko YN. Trialkyl(vinyl)phosphonium Chlorophenol Derivatives as Potent Mitochondrial Uncouplers and Antibacterial Agents. ACS OMEGA 2021; 6:20676-20685. [PMID: 34396013 PMCID: PMC8359139 DOI: 10.1021/acsomega.1c02909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 05/08/2023]
Abstract
Trialkyl phosphonium derivatives of vinyl-substituted p-chlorophenol were synthesized here by a recently developed method of preparing quaternary phosphonium salts from phosphine oxides using Grignard reagents. All the derivatives with a number (n) of carbon atoms in phosphonium alkyl substituents varying from 4 to 7 showed pronounced uncoupling activity in isolated rat liver mitochondria at micromolar concentrations, with a tripentyl derivative being the most effective both in accelerating respiration and causing membrane potential collapse, as well as in provoking mitochondrial swelling in a potassium-acetate medium. Remarkably, the trialkyl phosphonium derivatives with n from 4 to 7 also proved to be rather potent antibacterial agents. Methylation of the chlorophenol hydroxyl group suppressed the effects of P555 and P444 on the respiration and membrane potential of mitochondria but not those of P666, thereby suggesting a mechanistic difference in the mitochondrial uncoupling by these derivatives, which was predominantly protonophoric (carrier-like) in the case of P555 and P444 but detergent-like with P666. The latter was confirmed by the carboxyfluorescein leakage assay on model liposomal membranes.
Collapse
Affiliation(s)
- Natalia
V. Terekhova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Lyudmila S. Khailova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Tatyana I. Rokitskaya
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Pavel A. Nazarov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Daut R. Islamov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Konstantin S. Usachev
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Dmitry A. Tatarinov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Vladimir F. Mironov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Elena A. Kotova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Yuri N. Antonenko
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| |
Collapse
|
18
|
Fourmois L, Poyer F, Sourdon A, Naud-Martin D, Nagarajan S, Chennoufi R, Deprez E, Teulade-Fichou MP, Mahuteau-Betzer F. Modulation of Cellular Fate of Vinyl Triarylamines through Structural Fine Tuning: To Stay or Not To Stay in the Mitochondria? Chembiochem 2021; 22:2457-2467. [PMID: 34008276 DOI: 10.1002/cbic.202100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Indexed: 11/08/2022]
Abstract
Mitochondria are involved in many cellular pathways and dysfunctional mitochondria are linked to various diseases. Hence efforts have been made to design mitochondria-targeted fluorophores for monitoring the mitochondrial status. However, the factors that govern the mitochondria-targeted potential of dyes are not well-understood. In this context, we synthesized analogues of the TP-2Bzim probe belonging to the vinyltriphenylamine (TPA) class and already described for its capacity to bind nuclear DNA in fixed cells and mitochondria in live cells. These analogues (TP-1Bzim, TPn -2Bzim, TP1+ -2Bzim, TN-2Bzim) differ in the cationic charge, the number of vinylbenzimidazolium branches and the nature of the triaryl core. Using microscopy, we demonstrated that the cationic derivatives accumulate in mitochondria but do not reach mtDNA. Under depolarisation of the mitochondrial membrane, TP-2Bzim and TP1+ -2Bzim translocate to the nucleus in direct correlation with their strong DNA affinity. This reversible phenomenon emphasizes that these probes can be used to monitor ΔΨm variations.
Collapse
Affiliation(s)
- Laura Fourmois
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Florent Poyer
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Aude Sourdon
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Delphine Naud-Martin
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Sounderya Nagarajan
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Rahima Chennoufi
- ENS Paris-Saclay, Université Paris-Saclay, CNRS UMR8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), 91190, Gif-sur-Yvette, France
| | - Eric Deprez
- ENS Paris-Saclay, Université Paris-Saclay, CNRS UMR8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), 91190, Gif-sur-Yvette, France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Florence Mahuteau-Betzer
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| |
Collapse
|
19
|
Chimeric Drug Design with a Noncharged Carrier for Mitochondrial Delivery. Pharmaceutics 2021; 13:pharmaceutics13020254. [PMID: 33673228 PMCID: PMC7918843 DOI: 10.3390/pharmaceutics13020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter. We implemented this concept in a medicinal chemistry application by developing an antitumor, metabolic chimeric drug based on the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA). The promising features of the thiophene moiety as a noncharged carrier for targeting mitochondria may represent a starting point for the design of new metabolism-targeting drugs.
Collapse
|
20
|
Calori IR, Bi H, Tedesco AC. Expanding the Limits of Photodynamic Therapy: The Design of Organelles and Hypoxia-Targeting Nanomaterials for Enhanced Photokilling of Cancer. ACS APPLIED BIO MATERIALS 2021; 4:195-228. [PMID: 35014281 DOI: 10.1021/acsabm.0c00945] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive clinical protocol that combines a nontoxic photosensitizer (PS), appropriate visible light, and molecular oxygen for cancer treatment. This triad generates reactive oxygen species (ROS) in situ, leading to different cell death pathways and limiting the arrival of nutrients by irreversible destruction of the tumor vascular system. Despite the number of formulations and applications available, the advancement of therapy is hindered by some characteristics such as the hypoxic condition of solid tumors and the limited energy density (light fluence) that reaches the target. As a result, the use of PDT as a definitive monotherapy for cancer is generally restricted to pretumor lesions or neoplastic tissue of approximately 1 cm in size. To expand this limitation, researchers have synthesized functional nanoparticles (NPs) capable of carrying classical photosensitizers with self-supplying oxygen as well as targeting specific organelles such as mitochondria and lysosomes. This has improved outcomes in vitro and in vivo. This review highlights the basis of PDT, many of the most commonly used strategies of functionalization of smart NPs, and their potential to break the current limits of the classical protocol of PDT against cancer. The application and future perspectives of the multifunctional nanoparticles in PDT are also discussed in some detail.
Collapse
Affiliation(s)
- Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo-Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo-Ribeirão Preto, São Paulo 14040-901, Brazil.,School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei 230601, China
| |
Collapse
|
21
|
Kulkarni CA, Fink BD, Gibbs BE, Chheda PR, Wu M, Sivitz WI, Kerns RJ. A Novel Triphenylphosphonium Carrier to Target Mitochondria without Uncoupling Oxidative Phosphorylation. J Med Chem 2021; 64:662-676. [PMID: 33395531 DOI: 10.1021/acs.jmedchem.0c01671] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction is an underlying pathology in numerous diseases. Delivery of diagnostic and therapeutic cargo directly into mitochondria is a powerful approach to study and treat these diseases. The triphenylphosphonium (TPP+) moiety is the most widely used mitochondriotropic carrier. However, studies have shown that TPP+ is not inert; TPP+ conjugates uncouple mitochondrial oxidative phosphorylation. To date, all efforts toward addressing this problem have focused on modifying lipophilicity of TPP+-linker-cargo conjugates to alter mitochondrial uptake, albeit with limited success. We show that structural modifications to the TPP+ phenyl rings that decrease electron density on the phosphorus atom can abrogate uncoupling activity as compared to the parent TPP+ moiety and prevent dissipation of mitochondrial membrane potential. These alterations of the TPP+ structure do not negatively affect the delivery of cargo to mitochondria. Results here identify the 4-CF3-phenyl TPP+ moiety as an inert mitochondria-targeting carrier to safely target pharmacophores and probes to mitochondria.
Collapse
Affiliation(s)
- Chaitanya A Kulkarni
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brian D Fink
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, United States
| | - Bettine E Gibbs
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Pratik R Chheda
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Meng Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, United States.,University of Iowa High Throughput Screening (UIHTS) Core, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - William I Sivitz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, United States
| | - Robert J Kerns
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
22
|
Schanne G, Henry L, Ong HC, Somogyi A, Medjoubi K, Delsuc N, Policar C, García F, Bertrand HC. Rhenium carbonyl complexes bearing methylated triphenylphosphonium cations as antibody-free mitochondria trackers for X-ray fluorescence imaging. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00542a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A convenient rhenium-based multimodal mitochondrial-targeted probe compatible with Synchrotron Radiation X-ray Fluorescence nano-imaging.
Collapse
Affiliation(s)
- Gabrielle Schanne
- Laboratoire des biomolécules
- LBM
- Département de chimie
- Ecole normale supérieure
- PSL University
| | - Lucas Henry
- Laboratoire des biomolécules
- LBM
- Département de chimie
- Ecole normale supérieure
- PSL University
| | - How Chee Ong
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Andrea Somogyi
- Synchrotron SOLEIL
- BP 48
- Saint-Aubin
- 91192 Gif sur Yvette
- France
| | - Kadda Medjoubi
- Synchrotron SOLEIL
- BP 48
- Saint-Aubin
- 91192 Gif sur Yvette
- France
| | - Nicolas Delsuc
- Laboratoire des biomolécules
- LBM
- Département de chimie
- Ecole normale supérieure
- PSL University
| | - Clotilde Policar
- Laboratoire des biomolécules
- LBM
- Département de chimie
- Ecole normale supérieure
- PSL University
| | - Felipe García
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
| | - Helene C. Bertrand
- Laboratoire des biomolécules
- LBM
- Département de chimie
- Ecole normale supérieure
- PSL University
| |
Collapse
|
23
|
Rokitskaya TI, Kotova EA, Luzhkov VB, Kirsanov RS, Aleksandrova EV, Korshunova GA, Tashlitsky VN, Antonenko YN. Lipophilic ion aromaticity is not important for permeability across lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183483. [PMID: 33002452 DOI: 10.1016/j.bbamem.2020.183483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022]
Abstract
To clarify the contribution of charge delocalization in a lipophilic ion to the efficacy of its permeation through a lipid membrane, we compared the behavior of alkyl derivatives of triphenylphosphonium, tricyclohexylphosphonium and trihexylphosphonium both in natural and artificial membranes. Exploring accumulation of the lipophilic cations in response to inside-negative membrane potential generation in mitochondria by using an ion-selective electrode revealed similar mitochondrial uptake of butyltricyclohexylphosphonium (C4TCHP) and butyltriphenylphosphonium (C4TPP). Fluorescence correlation spectroscopy also demonstrated similar membrane potential-dependent accumulation of fluorescein derivatives of tricyclohexyldecylphosphonium and decyltriphenylphosphonium in mitochondria. The rate constant of lipophilic cation translocation across the bilayer lipid membrane (BLM), measured by the current relaxation method, moderately increased in the following sequence: trihexyltetradecylphosphonium ([P6,6,6,14]) < triphenyltetradecylphosphonium (C14TPP) < tricyclohexyldodecylphosphonium (C12TCHP). In line with these results, measurements of the BLM stationary conductance indicated that membrane permeability for C4TCHP is 2.5 times higher than that for C4TPP. Values of the difference in the free energy of ion solvation in water and octane calculated using the density functional theory and the polarizable continuum solvent model were similar for methyltriphenylphosphonium, tricyclohexylmethylphosphonium and trihexylmethylphosphonium. Our results prove that both cyclic and aromatic moieties are not necessary for lipophilic ions to effectively permeate through lipid membranes.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor B Luzhkov
- Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, acad. Semenov av. 1, Chernogolovka, Moscow Region 142432, Russia; Department of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
24
|
Lei Q, Lai X, Zhang Y, Li Z, Li R, Zhang W, Ao N, Zhang H. PEGylated Bis-Quaternary Triphenyl-Phosphonium Tosylate Allows for Balanced Antibacterial Activity and Cytotoxicity. ACS APPLIED BIO MATERIALS 2020; 3:6400-6407. [PMID: 35021771 DOI: 10.1021/acsabm.0c00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quaternary triphenylphosphonium compounds (TPP+) have been widely recognized as an important antimicrobial because of their fast antimicrobial speed and broad antimicrobial spectrum. However, small-molecule TPP+ compounds have the defects of toxicity, which is the key factor that limits their practical applications. Here, two mono- and one bis-quaternary phosphonium tosylate compounds with different lengths of oligo(ethylene glycol) (OEG) chains and TPP+ as the active moiety were synthesized. Bis-TPP+ have a short OEG chain coupling two TPP+ at both ends, while mono-TPP+ attaches the OEG chain at one end in one molecule. In vitro antibacterial activities were evaluated against both Gram-positive as well as Gram-negative bacteria in terms of the inhibition zone (ZOI) and minimum inhibitory concentration (MIC). To investigate the antibacterial mechanism, β-galactosidase activity was monitored for measuring the degree of membrane permeability correlated to the abilities to disrupt the membranes of bacteria. Moreover, their structure-antibacterial activity and structure-cytotoxicity relationships were further analyzed. The results indicated that bis-TPP+ synthesized can reach the sterilization rate 90% or more against Escherichia coli and Staphylococcus aureus at MICs of 3.1 and 1.5 mg/mL, respectively, and meanwhile, the cell proliferation can reach more than 80%. This paper represents an excellent approach for development of bis-TPP+ bactericidal molecules that would achieve an optimal balance between antimicrobial activity and cytotoxicity.
Collapse
Affiliation(s)
- Qiqi Lei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xuexu Lai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuwei Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhou Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wenning Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Hong Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Pala L, Senn HM, Caldwell ST, Prime TA, Warrington S, Bright TP, Prag HA, Wilson C, Murphy MP, Hartley RC. Enhancing the Mitochondrial Uptake of Phosphonium Cations by Carboxylic Acid Incorporation. Front Chem 2020; 8:783. [PMID: 33033715 PMCID: PMC7509049 DOI: 10.3389/fchem.2020.00783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
There is considerable interest in developing drugs and probes targeted to mitochondria in order to understand and treat the many pathologies associated with mitochondrial dysfunction. The large membrane potential, negative inside, across the mitochondrial inner membrane enables delivery of molecules conjugated to lipophilic phosphonium cations to the organelle. Due to their combination of charge and hydrophobicity, quaternary triarylphosphonium cations rapidly cross biological membranes without the requirement for a carrier. Their extent of uptake is determined by the magnitude of the mitochondrial membrane potential, as described by the Nernst equation. To further enhance this uptake here we explored whether incorporation of a carboxylic acid into a quaternary triarylphosphonium cation would enhance its mitochondrial uptake in response to both the membrane potential and the mitochondrial pH gradient (alkaline inside). Accumulation of arylpropionic acid derivatives depended on both the membrane potential and the pH gradient. However, acetic or benzoic derivatives did not accumulate, due to their lowered pKa. Surprisingly, despite not being taken up by mitochondria, the phenylacetic or phenylbenzoic derivatives were not retained within mitochondria when generated within the mitochondrial matrix by hydrolysis of their cognate esters. Computational studies, supported by crystallography, showed that these molecules passed through the hydrophobic core of mitochondrial inner membrane as a neutral dimer. This finding extends our understanding of the mechanisms of membrane permeation of lipophilic cations and suggests future strategies to enhance drug and probe delivery to mitochondria.
Collapse
Affiliation(s)
- Laura Pala
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Hans M. Senn
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | - Tracy A. Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Thomas P. Bright
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Hiran A. Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Claire Wilson
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
26
|
Prag HA, Kula-Alwar D, Pala L, Caldwell ST, Beach TE, James AM, Saeb-Parsy K, Krieg T, Hartley RC, Murphy MP. Selective Delivery of Dicarboxylates to Mitochondria by Conjugation to a Lipophilic Cation via a Cleavable Linker. Mol Pharm 2020; 17:3526-3540. [PMID: 32692564 PMCID: PMC7482397 DOI: 10.1021/acs.molpharmaceut.0c00533] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Many
mitochondrial metabolites and bioactive molecules contain
two carboxylic acid moieties that make them unable to cross biological
membranes. Hence, there is considerable interest in facilitating the
uptake of these molecules into cells and mitochondria to modify or
report on their function. Conjugation to the triphenylphosphonium
(TPP) lipophilic cation is widely used to deliver molecules selectively
to mitochondria in response to the membrane potential. However, permanent
attachment to the cation can disrupt the biological function of small
dicarboxylates. Here, we have developed a strategy using TPP to release
dicarboxylates selectively within mitochondria. For this, the dicarboxylate
is attached to a TPP compound via a single ester bond, which is then
cleaved by intramitochondrial esterase activity, releasing the dicarboxylate
within the organelle. Leaving the second carboxylic acid free also
means mitochondrial uptake is dependent on the pH gradient across
the inner membrane. To assess this strategy, we synthesized a range
of TPP monoesters of the model dicarboxylate, malonate. We then tested
their mitochondrial accumulation and ability to deliver malonate to
isolated mitochondria and to cells, in vitro and in vivo. A TPP–malonate monoester compound, TPP11–malonate, in which the dicarboxylate group was attached
to the TPP compound via a hydrophobic undecyl link, was most effective
at releasing malonate within mitochondria in cells and in
vivo. Therefore, we have developed a TPP–monoester
platform that enables the selective release of bioactive dicarboxylates
within mitochondria.
Collapse
Affiliation(s)
- Hiran A Prag
- Molecular Research Center, Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Duvaraka Kula-Alwar
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Laura Pala
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stuart T Caldwell
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Timothy E Beach
- Department of Surgery, Cambridge National Institute for Health Research Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Andrew M James
- Molecular Research Center, Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, Cambridge National Institute for Health Research Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Richard C Hartley
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael P Murphy
- Molecular Research Center, Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
27
|
Wang J, Li J, Xiao Y, Fu B, Qin Z. TPP-based mitocans: a potent strategy for anticancer drug design. RSC Med Chem 2020; 11:858-875. [PMID: 33479681 PMCID: PMC7489259 DOI: 10.1039/c9md00572b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most important problems that endanger human health. The number of cancer patients is increasing rapidly worldwide. Compared with normal cells, cancer cells exhibit abnormal metabolism (abnormal glycolysis and oxidative phosphorylation, high levels of reactive oxygen species, anti-apoptosis, high mitochondrial membrane potential, and so on), and specific targeting of these metabolic abnormalities would be a promising drug design direction. These physiological characteristics are closely related to tumorigenesis and development, which are mainly regulated by mitochondria. Therefore, mitochondria have become important anticancer drug targets, attracting much attention in recent years. In this review, we systematically summarize various mitochondrial anticancer drugs developed, especially mitocans based on triphenylphosphonium (TPP), and discuss the advantages of TPP in endowing mitochondrial targeting function.
Collapse
Affiliation(s)
- Jiayao Wang
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| | - Jiaqi Li
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| | - Yumei Xiao
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| | - Bin Fu
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| | - Zhaohai Qin
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| |
Collapse
|
28
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
29
|
Chinna Ayya Swamy P, Sivaraman G, Priyanka RN, Raja SO, Ponnuvel K, Shanmugpriya J, Gulyani A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213233] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Nazarov PA, Kirsanov RS, Denisov SS, Khailova LS, Karakozova MV, Lyamzaev KG, Korshunova GA, Lukyanov KA, Kotova EA, Antonenko YN. Fluorescein Derivatives as Antibacterial Agents Acting via Membrane Depolarization. Biomolecules 2020; 10:biom10020309. [PMID: 32075319 PMCID: PMC7072581 DOI: 10.3390/biom10020309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Appending a lipophylic alkyl chain by ester bond to fluorescein has been previously shown to convert this popular dye into an effective protonophoric uncoupler of oxidative phosphorylation in mitochondria, exhibiting neuro- and nephroprotective effects in murine models. In line with this finding, we here report data on the pronounced depolarizing effect of a series of fluorescein decyl esters on bacterial cells. The binding of the fluorescein derivatives to Bacillus subtilis cells was monitored by fluorescence microscopy and fluorescence correlation spectroscopy (FCS). FCS revealed the energy-dependent accumulation of the fluorescein esters with decyl(triphenyl)- and decyl(tri-p-tolyl)phosphonium cations in the bacterial cells. The latter compound proved to be the most potent in suppressing B. subtilis growth.
Collapse
Affiliation(s)
- Pavel A. Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
- Correspondence: (P.A.N.); (E.A.K.)
| | - Roman S. Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| | - Stepan S. Denisov
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
| | - Ljudmila S. Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| | - Marina V. Karakozova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (M.V.K.); (K.A.L.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| | - Galina A. Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| | - Konstantin A. Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (M.V.K.); (K.A.L.)
| | - Elena A. Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
- Correspondence: (P.A.N.); (E.A.K.)
| | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (R.S.K.); (L.S.K.); (K.G.L.); (G.A.K.); (Y.N.A.)
| |
Collapse
|
31
|
Ong HC, Hu Z, Coimbra JTS, Ramos MJ, Kon OL, Xing B, Yeow EKL, Fernandes PA, García F. Enabling Mitochondrial Uptake of Lipophilic Dications Using Methylated Triphenylphosphonium Moieties. Inorg Chem 2019; 58:8293-8299. [DOI: 10.1021/acs.inorgchem.8b03380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhang Hu
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - João T. S. Coimbra
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Oi Lian Kon
- Division of Medical Sciences, Laboratory of Applied Human Genetics, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610, Singapore
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Edwin K. L. Yeow
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
32
|
Gilson RC, Tang R, Gautam KS, Grabowska D, Achilefu S. Trafficking of a Single Photosensitizing Molecule to Different Intracellular Organelles Demonstrates Effective Hydroxyl Radical-Mediated Photodynamic Therapy in the Endoplasmic Reticulum. Bioconjug Chem 2019; 30:1451-1458. [PMID: 31009564 DOI: 10.1021/acs.bioconjchem.9b00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photodynamic therapy (PDT) is often used in preclinical and clinical treatment regimens. Reactive oxygen species (ROS) generated by photosensitizers (PSs) upon exposure to light induce cell death via diverse mechanisms. PSs can exert therapeutic effects in different cellular organelles, although the efficacy of organelle-specific PDT has yet to be determined as most previous studies use different PSs in different organelles. Here, we explored how a single PS, chlorin e6 (Ce6), targeted to different organelles altered the effectiveness of PDT. Ce6 intrinsically localizes to the ER after 4 h of incubation. Modification of Ce6 via conjugation with an octapeptide (LS765), a monosubstituted triphenylphosphonium (TPP) derivative (LS897), or a disubstituted TPP derivative (LS909) altered the intrinsic localization. We determined that LS765 and LS9897 predominantly accumulated in the lysosomes, but LS909 trafficked equally to both the mitochondria and the lysosomes. Moreover, the conjugation altered the type of ROS produced by Ce6, increasing the ratio of hydrogen peroxide to hydroxyl radicals. Irradiation of identical concentrations of the PSs in solution with 650 nm, 0.84 mW/cm2 light for 10 min showed that the TPP conjugates nearly doubled the hydrogen peroxide production from ∼0.2 μM for Ce6 and LS765 to ∼0.37 μM for LS897 and LS909. In contrast, Ce6 produced ∼1.5-fold higher hydroxyl radicals than its conjugates. To compare the effect of each PS on cell death, we normalized the intracellular concentration of each PS. Hydrogen peroxide-producing PSs are effective PDT agents in the lysosomes while the hydroxyl-generating PSs are very effective in the ER. Compared to the PSs that accumulated in the lysosomes, only the ER-targeted Ce6 exerted >50% cell death at either low light power or low intracellular concentration. By delineating the contributions of cellular organelles and types of ROS produced, our work suggests that targeting hydroxyl radical-producing PSs to the ER is an exciting strategy to improve the therapeutic outcome of PDT.
Collapse
Affiliation(s)
- Rebecca C Gilson
- Department of Biomedical Engineering , Washington University in St. Louis , One Brookings Drive , St. Louis, Missouri 63130 , United States.,Department of Radiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Rui Tang
- Department of Radiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Krishna Sharmah Gautam
- Department of Radiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Dorota Grabowska
- Department of Radiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Samuel Achilefu
- Department of Biomedical Engineering , Washington University in St. Louis , One Brookings Drive , St. Louis, Missouri 63130 , United States.,Department of Radiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States.,Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , 660 South Euclid Avenue , St. Louis , Missouri 63110 , United States
| |
Collapse
|
33
|
Ucar E, Seven O, Lee D, Kim G, Yoon J, Akkaya EU. Selectivity in Photodynamic Action: Higher Activity of Mitochondria Targeting Photosensitizers in Cancer Cells. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Esma Ucar
- Department of ChemistryBilkent University Ankara 06800 Turkey
| | - Ozlem Seven
- UNAM – National Nanotechnology Research CenterBilkent University Ankara 06800 Turkey
| | - Dayoung Lee
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Engin U. Akkaya
- Department of ChemistryBilkent University Ankara 06800 Turkey
- UNAM – National Nanotechnology Research CenterBilkent University Ankara 06800 Turkey
- State Key Laboratory of Fine Chemicals School of Pharmaceutical Science and TechnologyDalian University of Technology Dalian 116024 China
| |
Collapse
|
34
|
Carvalho PHPR, Correa JR, Paiva KLR, Baril M, Machado DFS, Scholten JD, de Souza PEN, Veiga-Souza FH, Spencer J, Neto BAD. When the strategies for cellular selectivity fail. Challenges and surprises in the design and application of fluorescent benzothiadiazole derivatives for mitochondrial staining. Org Chem Front 2019. [DOI: 10.1039/c9qo00428a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design, synthesis, molecular architecture and the unexpected behavior of fluorescent benzothiadiazole for selective mitochondrial and plasma membrane staining are investigated.
Collapse
|
35
|
Rokitskaya TI, Luzhkov VB, Korshunova GA, Tashlitsky VN, Antonenko YN. Effect of methyl and halogen substituents on the transmembrane movement of lipophilic ions. Phys Chem Chem Phys 2019; 21:23355-23363. [DOI: 10.1039/c9cp03460a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The introduction of a halogen or a methyl substituent changes the speed of the flip-flop of the penetrating cations and anions in the opposite way.
Collapse
Affiliation(s)
- Tatyana I. Rokitskaya
- Belozersky Institute of Physico-Chemical Biology
- Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - Victor B. Luzhkov
- Department of Kinetics of Chemical and Biological Processes
- Institute of Problems of Chemical Physics
- Russian Academy of Sciences
- Moscow Region 142432
- Russia
| | - Galina A. Korshunova
- Belozersky Institute of Physico-Chemical Biology
- Lomonosov Moscow State University
- Moscow 119991
- Russia
| | | | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology
- Lomonosov Moscow State University
- Moscow 119991
- Russia
| |
Collapse
|
36
|
Shang K, Wang Y, Lu Y, Pei Z, Pei Y. Dual-Targeted Supramolecular Vesicles Based on the Complex of Galactose Capped Pillar[5]Arene and Triphenylphosphonium Derivative for Drug Delivery. Isr J Chem 2018. [DOI: 10.1002/ijch.201800080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kun Shang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Chemistry & Pharmacy; Northwest A&F University; Yangling, Shaanxi 712100 P.R. China
| | - Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Chemistry & Pharmacy; Northwest A&F University; Yangling, Shaanxi 712100 P.R. China
| | - Yuchao Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Chemistry & Pharmacy; Northwest A&F University; Yangling, Shaanxi 712100 P.R. China
- Analysis Center of College of Science & Technology; Hebei Agricultural University; Huanghua, Hebei 061100 P.R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Chemistry & Pharmacy; Northwest A&F University; Yangling, Shaanxi 712100 P.R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Chemistry & Pharmacy; Northwest A&F University; Yangling, Shaanxi 712100 P.R. China
| |
Collapse
|
37
|
Tarhouni M, Durand D, Önal E, Aggad D, İşci Ü, Ekineker G, Brégier F, Jamoussi B, Sol V, Gary-Bobo M, Dumoulin F. Triphenylphosphonium-substituted phthalocyanine: Design, synthetic strategy, photoproperties and photodynamic activity. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In line with current efforts to direct PDT photosensitizers to specific organelles such as mitochondria, a triphenylphosphonium-tetrasubstituted Zn phthalocyanine was designed, taking into account synthetic constraints. Triphenylphosphonium moieties were successfully introduced on alkyl bromide substituents on a pre-formed phthalocyanine. Photophysical and photochemical measurements showed that the photoproperties of the Zn phthalocyanine core were not affected by the triphenylphosphonium groups. Biological investigations demonstrated the dark innocuousness of the phthalocyanine up to 1 [Formula: see text]M, a concentration that exhibited a powerful phototoxicity. Cell death was confirmed to be photodynamically induced thanks to reactive oxygen species detection experiments. Nonetheless, the triphenylphosphonium moieties did not promote the accumulation of the phthalocyanine in mitochondria as significantly as expected.
Collapse
Affiliation(s)
- Mohamed Tarhouni
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
- Faculté Des Sciences de Bizerte, Université de Carthage, UR17ES01 Didactique des Sciences Expérimentales, et de chimie supramoléculaire, 7021 Zarzouna Bizerte, Tunisia
- Laboratoire de Chimie des Substances Naturelles EA 1069 Université de Limoges, Faculté des Sciences, et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
| | - Denis Durand
- Institut de Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Avenue Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Emel Önal
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Dina Aggad
- Institut de Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Avenue Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Ümit İşci
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Gülçin Ekineker
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Frédérique Brégier
- Laboratoire de Chimie des Substances Naturelles EA 1069 Université de Limoges, Faculté des Sciences, et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
| | - Bassem Jamoussi
- Université Tunis el Manar, UR17ES01 Didactique des Sciences Expérimentales et de Chimie Supramoléculaire, Tunis, Tunisia
| | - Vincent Sol
- Laboratoire de Chimie des Substances Naturelles EA 1069 Université de Limoges, Faculté des Sciences, et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
| | - Magali Gary-Bobo
- Institut de Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Avenue Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Fabienne Dumoulin
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| |
Collapse
|
38
|
Mahalingam S, Ordaz JD, Low PS. Targeting of a Photosensitizer to the Mitochondrion Enhances the Potency of Photodynamic Therapy. ACS OMEGA 2018; 3:6066-6074. [PMID: 30023938 PMCID: PMC6045488 DOI: 10.1021/acsomega.8b00692] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 05/24/2023]
Abstract
Photodynamic therapy (PDT) involves use of a photosensitizer, whose activation with light leads to the production of singlet oxygen (SOS), generation of reactive oxygen species (ROS), and initiation of associated cell toxicity. Because a cell's mitochondria constitute sites where oxygen levels are high, ROS can be readily produced, and apoptosis is commonly initiated. Therefore, an ideal PDT agent might be a potent photosensitizer that could naturally accumulate in mitochondria. Although a number of mitochondria-targeting moieties, including triphenylphosphine, guanidinium, and bisguanidium, have been identified, a quantitative comparison of their efficacies in targeting mitochondria has not been performed. In this study, we have prepared triphenylphosphine, guanidinium, and bisguanidium derivatives of the FDA-approved PDT agent verteporfin (Visudyne, benzoporphyrin derivative-monoacid ring A: BPD-MA) and compared their abilities to induce the intracellular perturbations common to potent PDT agents. Cellular parameters examined included subcellular localization of the verteporfin, real-time monitoring of SOS production, quantitation of reactive oxygen species (ROS) generation, analysis of mitochondria and chromatin integrity, characterization of cytoskeletal disruption and evaluation of cytochrome C release as a measure of apoptosis. An analysis of these parameters demonstrates that the triphenylphosphine derivative (0323) has better mitochondria-targeting efficacy, SOS production, and mitochondria membrane toxicity than either unmodified verteporfin or its guanidinium derivatives. Consistent with this potency, 0323 also induced the most prominent mitochondria swelling, actin depolymerization, pyknosis, and cytochrome C release. We conclude that triphenylphosphine has a better mitochondria-targeting moiety than guanidinium or bis-guanidinium and those PDT photosensitizers with improved cytotoxicities can be prepared by conjugating a mitochondria-targeting moiety to the desired photosensitizer.
Collapse
Affiliation(s)
- Sakkarapalayam
M. Mahalingam
- Department
of Chemistry and Institute for Drug Discovery, Purdue University, 720
Clinic Drive, West Lafayette, Indiana 47907, United
States
| | - Josue D. Ordaz
- Department
of Chemistry and Institute for Drug Discovery, Purdue University, 720
Clinic Drive, West Lafayette, Indiana 47907, United
States
- Indiana
University School of Medicine, 340 W 10th Street #6200, Indianapolis, Indiana 46202, United States
| | - Philip S. Low
- Department
of Chemistry and Institute for Drug Discovery, Purdue University, 720
Clinic Drive, West Lafayette, Indiana 47907, United
States
| |
Collapse
|
39
|
Zhang X, Yan Q, Mulatihan DN, Zhu J, Fan A, Wang Z, Zhao Y. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy. NANOTECHNOLOGY 2018; 29:255101. [PMID: 29620538 DOI: 10.1088/1361-6528/aabbdb] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Wu S, Zhang A, Li S, Chatterjee S, Qi R, Segura‐Ibarra V, Ferrari M, Gupte A, Blanco E, Hamilton DJ. Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700530. [PMID: 29593955 PMCID: PMC5867055 DOI: 10.1002/advs.201700530] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Indexed: 05/31/2023]
Abstract
Aberrant mitochondrial energy transfer underlies prevalent chronic health conditions, including cancer, cardiovascular, and neurodegenerative diseases. Mitochondrial transplantation represents an innovative strategy aimed at restoring favorable metabolic phenotypes in cells with dysfunctional energy metabolism. While promising, significant barriers to in vivo translation of this approach abound, including limited cellular uptake and recognition of mitochondria as foreign. The objective is to functionalize isolated mitochondria with a biocompatible polymer to enhance cellular transplantation and eventual in vivo applications. Herein, it is demonstrated that grafting of a polymer conjugate composed of dextran with triphenylphosphonium onto isolated mitochondria protects the organelles and facilitates cellular internalization compared with uncoated mitochondria. Importantly, mitochondrial transplantation into cancer and cardiovascular cells has profound effects on respiration, mediating a shift toward improved oxidative phosphorylation, and reduced glycolysis. These findings represent the first demonstration of polymer functionalization of isolated mitochondria, highlighting a viable strategy for enabling clinical applications of mitochondrial transplantation.
Collapse
Affiliation(s)
- Suhong Wu
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Aijun Zhang
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Shumin Li
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Somik Chatterjee
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Ruogu Qi
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | | | - Mauro Ferrari
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineWeill Cornell MedicineNew YorkNY10065USA
| | - Anisha Gupte
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of PhysiologyWeill Cornell MedicineNew YorkNY10065USA
| | - Elvin Blanco
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Dale J. Hamilton
- Center for BioenergeticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of MedicineWeill Cornell MedicineNew YorkNY10065USA
- Division EndocrinologyDiabetes, and MetabolismDepartment of MedicineHouston Methodist HospitalHoustonTX77030USA
| |
Collapse
|
41
|
Wang Q, Ng DKP, Lo PC. Functional aza-boron dipyrromethenes for subcellular imaging and organelle-specific photodynamic therapy. J Mater Chem B 2018; 6:3285-3296. [DOI: 10.1039/c8tb00593a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of aza-BODIPY derivatives which can serve as specific fluorescent probes for the mitochondria and lysosomes of a range of cancer cell lines and photosensitisers acting specifically on these subcellular compartments are reported.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N.T
- China
| | - Dennis K. P. Ng
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N.T
- China
| | - Pui-Chi Lo
- Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|
42
|
Zhou W, Yu H, Zhang LJ, Wu B, Wang CX, Wang Q, Deng K, Zhuo RX, Huang SW. Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy. NANOSCALE 2017; 9:17044-17053. [PMID: 29083424 DOI: 10.1039/c7nr06130g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of mitochondrial delivery of an anticancer drug to cancer cells has been recognized to improve therapeutic efficacy. The introduction of lipophilic cations, such as triphenylphosphonium (TPP), onto the surface of nanocarriers was utilized to target mitochondria via strong electrostatic interactions between positively charged TPP and the negatively charged mitochondrial membrane. However, the highly positive charge nature of TPP leads to rapid clearance from the blood, decrease of circulation lifetime, and nonspecific targeting of mitochondria of cells. Here, we report a strategy for improving the anticancer efficacy of paclitaxel via redox triggered intracellular activation of mitochondria-targeting. The lipid-polymer hybrid nanoparticles (LPNPs) are composed of poly(d,l-lactide-co-glycolide) (PLGA), a TPP-containing amphiphilic polymer (C18-PEG2000-TPP) and a reduction-responsive amphiphilic polymer (DLPE-S-S-mPEG4000). The charges of TPP in LPNPs were almost completely shielded by surface coating of a PEG4000 layer, ensuring high tumor accumulation. After uptake by cancer cells, the surface charges of LPNPs were recovered due to the detachment of PEG4000 under intracellular reductive conditions, resulting in rapid and precise localization in mitochondria. This kind of simple, easy and practicable mitochondria-targeting nanoplatform showed high anticancer activity, and the activatable strategy is valuable for developing a variety of nanocarriers for application in the delivery of other drugs.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|