1
|
Wichert M, Guasch L, Franzini RM. Challenges and Prospects of DNA-Encoded Library Data Interpretation. Chem Rev 2024; 124:12551-12572. [PMID: 39508428 DOI: 10.1021/acs.chemrev.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
DNA-encoded library (DEL) technology is a powerful platform for the efficient identification of novel chemical matter in the early drug discovery process enabled by parallel screening of vast libraries of encoded small molecules through affinity selection and deep sequencing. While DEL selections provide rich data sets for computational drug discovery, the underlying technical factors influencing DEL data remain incompletely understood. This review systematically examines the key parameters affecting the chemical information in DEL data and their impact on hit triaging and machine learning integration. The need for rigorous data handling and interpretation is emphasized, with standardized methods being critical for the success of DEL-based approaches. Major challenges include the relationship between sequence counts and binding affinities, frequent hitters, and the influence of factors such as inhomogeneous library composition, DNA damage, and linkers on binding modes. Experimental artifacts, such as those caused by protein immobilization and screening matrix effects, further complicate data interpretation. Recent advancements in using machine learning to denoise DEL data and predict drug candidates are highlighted. This review offers practical guidance on adopting best practices for integrating robust methodologies, comprehensive data analysis, and computational tools to improve the accuracy and efficacy of DEL-driven hit discovery.
Collapse
Affiliation(s)
- Moreno Wichert
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
He L, She L, Wang L, Mi C, Ma K, Yu M, Long X, Zhang C. The electric regulation mechanism of drug molecules intercalating with DNA. Arch Biochem Biophys 2024; 762:110203. [PMID: 39489204 DOI: 10.1016/j.abb.2024.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The insertion of small drug molecules into DNA can change its electrical properties, thereby controlling the probability of its electrical transmission. This characteristic has enabled its widespread application in molecular electronics. However, the current understanding of the intercalation properties and electronic transmission mechanisms is still not deep enough, which severely restricts its practical application. In this paper, the density functional theory and the non-equilibrium Green's function formula are combined to bind three different small drug molecules to the same sequence of DNA through intercalation, in order to discuss the impact of intercalation and molecular structure on the electrical properties of DNA. After inserting two MAR70 molecules, the conductivity decreased from 2.38×10-5 G0 to 3.37×10-7 G0 . Upon the insertion of Nogalamycin, the conductivity dropped to 2.01×10-5 G0, only slightly lower than that of bare B-DNA. However, when cyanomorpholinodoxorubicin was inserted, the conductivity was 2.65×10-6 G0. In our study, we observed some common characteristics. After intercalating with drug molecules, new energy levels were induced, altering the positions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels, resulting in a narrowed bandgap and consequently reduced conductivity of the complex. Furthermore, the conductivity was also related to the number of inserted drug molecules, fewer inserted molecules led to a decrease in conductivity. The results of this study indicate that embedding drug molecules can reduce or regulate the conductivity of DNA, providing new insights for its application in the field of nanoelectronics.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China.
| | - Liang She
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Liyan Wang
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Cheng Mi
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Kang Ma
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Mi Yu
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Xing Long
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Chaopeng Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| |
Collapse
|
3
|
Chheda PR, Simmons N, Shi Z. Hydrophobic Surfactant-DNA Complex (Surf-DNA) Enables DNA-Encoded-Library-Compatible Decarboxylative Arylation under Anhydrous Conditions. Org Lett 2024; 26:4365-4370. [PMID: 38743933 DOI: 10.1021/acs.orglett.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
DNA-encoded libraries (DELs) are a key technology for identifying small-molecule hits in both the pharmaceutical industry and academia, but their chemical diversity is largely limited to water-compatible reactions to aid in the solubility and integrity of encoding DNA tags. To broaden the DEL chemical space, we present a workflow utilizing DNA-cationic surfactant complexation that enables dissolution and reactions on-DNA in anhydrous organic solvents. We demonstrate its utility by developing DEL-compatible photoredox decarboxylative C(sp2)-C(sp3) coupling under water-free conditions. The workflow is optimized for the 96-well format necessary for large-scale DEL productions, and it enables screening and optimization of DEL-compatible reactions in organic solvents.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
4
|
He L, Xie Z, Long X, Zhang C, Qi F, Zhang N. Electrical modulation properties of DNA drug molecules. Hum Mol Genet 2023; 32:357-366. [PMID: 35771227 DOI: 10.1093/hmg/ddac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/24/2023] Open
Abstract
DNA drug molecules are not only widely used in gene therapy, but also play an important role in controlling the electrical properties of molecular electronics. Covalent binding, groove binding and intercalation are all important forms of drug-DNA interaction. But its applications are limited due to a lack of understanding of the electron transport mechanisms after different drug-DNA interaction modes. Here, we used a combination of density functional theory calculations and nonequilibrium Green's function formulation with decoherence to study the effect of drug molecules on the charge transport property of DNA under three different binding modes. Conductance of DNA is found to decrease from 2.35E-5 G0 to 1.95E-6 G0 upon doxorubicin intercalation due to modifications of the density of states in the near-highest occupied molecular orbital region, δG = 1105.13%. Additionally, the conductance of DNA after cis-[Pt(NH3)2(py)Cl]+ covalent binding increases from 1.02E-6 G0 to 5.25E-5 G0, δG = 5047.06%. However, in the case of pentamidine groove binding, because there is no direct change in DNA molecular structure during drug binding, the conductance changes before and after drug binding is much smaller than in the two above cases, δG = 90.43%. Our theoretical calculations suggest that the conductance of DNA can be regulated by different drug molecules or switching the interaction modes between small molecules and DNA. This regulation opens new possibilities for their potential applications in controllable modulation of the electron transport property of DNA.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhiyang Xie
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xing Long
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Chaopeng Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fei Qi
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Nan Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
5
|
Antisense Oligonucleotides Conjugated with Lipophilic Compounds: Synthesis and In Vitro Evaluation of Exon Skipping in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23084270. [PMID: 35457088 PMCID: PMC9032562 DOI: 10.3390/ijms23084270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Our groups previously reported that conjugation at 3′-end with ursodeoxycholic acid (UDCA) significantly enhanced in vitro exon skipping properties of ASO 51 oligonucleotide targeting the human DMD exon 51. In this study, we designed a series of lipophilic conjugates of ASO 51, to explore the influence of the lipophilic moiety on exon skipping efficiency. To this end, three bile acids and two fatty acids have been derivatized and/or modified and conjugated to ASO 51 by automatized solid phase synthesis. We measured the melting temperature (Tm) of lipophilic conjugates to evaluate their ability to form a stable duplex with the target RNA. The exon skipping efficiency has been evaluated in myogenic cell lines first in presence of a transfection agent, then in gymnotic conditions on a selection of conjugated ASO 51. In the case of 5′-UDC-ASO 51, we also evaluated the influence of PS content on exon skipping efficiency; we found that it performed better exon skipping with full PS linkages. The more efficient compounds in terms of exon skipping were found to be 5′-UDC- and 5′,3′-bis-UDC-ASO 51.
Collapse
|
6
|
Marchesi E, Bovolenta M, Preti L, Capobianco ML, Mamchaoui K, Bertoldo M, Perrone D. Synthesis and Exon-Skipping Properties of a 3'-Ursodeoxycholic Acid-Conjugated Oligonucleotide Targeting DMD Pre-mRNA: Pre-Synthetic versus Post-Synthetic Approach. Molecules 2021; 26:7662. [PMID: 34946743 PMCID: PMC8707236 DOI: 10.3390/molecules26247662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Steric blocking antisense oligonucleotides (ASO) are promising tools for splice modulation such as exon-skipping, although their therapeutic effect may be compromised by insufficient delivery. To address this issue, we investigated the synthesis of a 20-mer 2'-OMe PS oligonucleotide conjugated at 3'-end with ursodeoxycholic acid (UDCA) involved in the targeting of human DMD exon 51, by exploiting both a pre-synthetic and a solution phase approach. The two approaches have been compared. Both strategies successfully provided the desired ASO 51 3'-UDC in good yield and purity. It should be pointed out that the pre-synthetic approach insured better yields and proved to be more cost-effective. The exon skipping efficiency of the conjugated oligonucleotide was evaluated in myogenic cell lines and compared to that of unconjugated one: a better performance was determined for ASO 51 3'-UDC with an average 9.5-fold increase with respect to ASO 51.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Matteo Bovolenta
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Lorenzo Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.B.)
| | - Massimo L. Capobianco
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy;
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, Sorbonne Université, Inserm, F-75013 Paris, France;
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.B.)
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
7
|
Du HC, Matzuk MM, Chen YC. Synthesis of 5-substituted tetrazoles via DNA-conjugated nitrile. Org Biomol Chem 2020; 18:9221-9226. [PMID: 33174894 DOI: 10.1039/d0ob02021d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc bromide-catalyzed synthesis of 5-substituted tetrazoles via DNA-conjugated nitriles using sodium azide has been developed. The protocol offered moderate to excellent yields of tetrazoles with a broad range of substrates, including a variety of functionalized aromatic, heterocyclic, and aliphatic nitriles. In addition, the electronic effect within the substrate scope was evaluated. DNA fidelity was assessed by ligation efficiency and amplifiability analysis. The ability to generate tetrazoles expands the diversity of heterocycles in the preparation of DNA-encoded chemical libraries.
Collapse
Affiliation(s)
- Huang-Chi Du
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | - Ying-Chu Chen
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
8
|
Chen YC, Faver JC, Ku AF, Miklossy G, Riehle K, Bohren KM, Ucisik MN, Matzuk MM, Yu Z, Simmons N. C-N Coupling of DNA-Conjugated (Hetero)aryl Bromides and Chlorides for DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2020; 31:770-780. [PMID: 32019312 PMCID: PMC7086399 DOI: 10.1021/acs.bioconjchem.9b00863] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
DNA-encoded
chemical library (DECL) screens are a rapid and economical
tool to identify chemical starting points for drug discovery. As a
robust transformation for drug discovery, palladium-catalyzed C–N
coupling is a valuable synthetic method for the construction of DECL
chemical matter; however, currently disclosed methods have only been
demonstrated on DNA-attached (hetero)aromatic iodide and bromide electrophiles.
We developed conditions utilizing an N-heterocyclic
carbene–palladium catalyst that extends this reaction to the
coupling of DNA-conjugated (hetero)aromatic chlorides with (hetero)aromatic
and select aliphatic amine nucleophiles. In addition, we evaluated
steric and electronic effects within this catalyst series, carried
out a large substrate scope study on two representative (hetero)aryl
bromides, and applied this newly developed method within the construction
of a 63 million-membered DECL.
Collapse
Affiliation(s)
- Ying-Chu Chen
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - John C Faver
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Angela F Ku
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Gabriella Miklossy
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kevin Riehle
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kurt M Bohren
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Melek N Ucisik
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhifeng Yu
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Nicholas Simmons
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
9
|
Potowski M, Losch F, Wünnemann E, Dahmen JK, Chines S, Brunschweiger A. Screening of metal ions and organocatalysts on solid support-coupled DNA oligonucleotides guides design of DNA-encoded reactions. Chem Sci 2019; 10:10481-10492. [PMID: 32055372 PMCID: PMC7003951 DOI: 10.1039/c9sc04708e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022] Open
Abstract
DNA-encoded compound libraries are widely used in drug discovery. Screening of catalysts for compatibility with solid phase-coupled DNA sequences guided the selection of encoded reactions, exemplified by a Zn(II)-mediated aza-Diels–Alder reaction.
DNA-encoded compound libraries are a widely used technology for target-based small molecule screening. Generally, these libraries are synthesized by solution phase combinatorial chemistry requiring aqueous solvent mixtures and reactions that are orthogonal to DNA reactivity. Initiating library synthesis with readily available controlled pore glass-coupled DNA barcodes benefits from enhanced DNA stability due to nucleobase protection and choice of dry organic solvents for encoded compound synthesis. We screened the compatibility of solid-phase coupled DNA sequences with 53 metal salts and organic reagents. This screening experiment suggests design of encoded library synthesis. Here, we show the reaction optimization and scope of three sp3-bond containing heterocyclic scaffolds synthesized on controlled pore glass-connected DNA sequences. A ZnCl2-promoted aza-Diels–Alder reaction with Danishefsky's diene furnished diverse substituted DNA-tagged pyridones, and a phosphoric acid organocatalyst allowed for synthesis of tetrahydroquinolines by the Povarov reaction and pyrimidinones by the Biginelli reaction, respectively. These three reactions caused low levels of DNA depurination and cover broad and only partially overlapping chemical space though using one set of DNA-coupled starting materials.
Collapse
Affiliation(s)
- Marco Potowski
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Florian Losch
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Elena Wünnemann
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Janina K Dahmen
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Silvia Chines
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| |
Collapse
|
10
|
Mohajeri N, Imani M, Akbarzadeh A, Sadighi A, Zarghami N. An update on advances in new developing DNA conjugation diagnostics and ultra-resolution imaging technologies: Possible applications in medical and biotechnological utilities. Biosens Bioelectron 2019; 144:111633. [DOI: 10.1016/j.bios.2019.111633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
11
|
Kunig VBK, Ehrt C, Dömling A, Brunschweiger A. Isocyanide Multicomponent Reactions on Solid-Phase-Coupled DNA Oligonucleotides for Encoded Library Synthesis. Org Lett 2019; 21:7238-7243. [PMID: 31464126 DOI: 10.1021/acs.orglett.9b02448] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isocyanide multicomponent reactions play a prominent role in drug discovery. This chemistry has hardly been investigated for compatibility with DNA-encoded combinatorial synthesis. The Ugi, Ugi-azide, and Groebke-Blackburn-Bienaymé reactions are well-tolerated by DNA on the solid phase and show a broad scope. However, an oxadiazole-forming variant of the Ugi reaction caused DNA depurination, requiring a more stable hexathymidine DNA for encoded library synthesis. Cheminformatic analysis revealed that isocyanide multicomponent-reaction-based encoded libraries cover a diverse chemical space.
Collapse
Affiliation(s)
- Verena B K Kunig
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - Christiane Ehrt
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - Alexander Dömling
- Drug Design , University of Groningen , Deusinglaan 1 , 7313 AV Groningen , The Netherlands
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| |
Collapse
|
12
|
Potowski M, Kunig VBK, Losch F, Brunschweiger A. Synthesis of DNA-coupled isoquinolones and pyrrolidines by solid phase ytterbium- and silver-mediated imine chemistry. MEDCHEMCOMM 2019; 10:1082-1093. [PMID: 31391880 PMCID: PMC6644566 DOI: 10.1039/c9md00042a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
DNA-encoded libraries of chemically synthesized compounds are an important small molecule screening technology. The synthesis of encoded compounds in solution is currently restricted to a few DNA-compatible and water-tolerant reactions. Encoded compound synthesis of short DNA-barcodes covalently connected to solid supports benefits from a broad range of choices of organic solvents. Here, we show that this encoded chemistry approach allows for the synthesis of DNA-coupled isoquinolones by an Yb(iii)-mediated Castagnoli-Cushman reaction under anhydrous reaction conditions and for the synthesis of highly substituted pyrrolidines by Ag(i)-mediated 1,3-dipolar azomethine ylide cycloaddition. An encoding scheme for these DNA-barcoded compounds based on a DNA hairpin is demonstrated.
Collapse
Affiliation(s)
- Marco Potowski
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Verena B K Kunig
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Florian Losch
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| |
Collapse
|
13
|
Yuen LH, Dana S, Liu Y, Bloom SI, Thorsell AG, Neri D, Donato AJ, Kireev D, Schüler H, Franzini RM. A Focused DNA-Encoded Chemical Library for the Discovery of Inhibitors of NAD+-Dependent Enzymes. J Am Chem Soc 2019; 141:5169-5181. [DOI: 10.1021/jacs.8b08039] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Srikanta Dana
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Yu Liu
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Samuel I. Bloom
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157 Huddinge, Sweden
| | - Dario Neri
- Department of Pharmaceutical Sciences, ETH Zürich, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| | - Anthony J. Donato
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157 Huddinge, Sweden
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Hou M, Xue P, Gao YE, Ma X, Bai S, Kang Y, Xu Z. Gemcitabine–camptothecin conjugates: a hybrid prodrug for controlled drug release and synergistic therapeutics. Biomater Sci 2017; 5:1889-1897. [DOI: 10.1039/c7bm00382j] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Self-assembled small molecule prodrug loaded with gemcitabine and camptothecin and responsive to reductive tumour microenvironment for combination cancer chemotherapy.
Collapse
Affiliation(s)
- Meili Hou
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Yong-E. Gao
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Xiaoqian Ma
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Shuang Bai
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|