1
|
Xu Z, Zhang X, Pal C, Rozners E, Callahan BP. Enzyme fragment complementation driven by nucleic acid hybridization sans self-labeling protein. Bioorg Chem 2024; 154:108039. [PMID: 39705932 DOI: 10.1016/j.bioorg.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
A modified enzyme fragment complementation assay has been designed and validated as a turn-on biosensor for nucleic acid detection in dilute aqueous solution. The assay is target sequence-agonistic and uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified enzymatically at their C-termini to steramers, sterol-linked oligonucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, serves as the self-cleaving enzyme for the NanoBiT-steramer bioconjugations. Unlike current approaches, the final bioconjugate generated by DHhC and used for nucleic acid detection is free of self-labeling passenger protein. In the presence of single stranded (ss) DNA or RNA template with adjacent segments complementary to the Nano-BiT steramer oligonucleotides, the two NanoBiT fragments associate productively, reconstituting NanoBiT's luciferase activity. In samples containing ssDNA or RNA template at low nM concentrations, NanoBiT luminescence exceeded background signal by 30- to 60-fold. The steramer probe sequences used to prepare these sensors are unconstrained in length and composition. In the absence of sequence constraints of the probe element and without the added bulk of a self-labeling protein, these NanoBiT-steramer bioconjugates open new applications in the programmable detection of small fragments of coding and noncoding DNA and RNA.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Chandan Pal
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA.
| |
Collapse
|
2
|
Iwaï H, Beyer HM, Johansson JEM, Li M, Wlodawer A. The three-dimensional structure of the Vint domain from Tetrahymena thermophila suggests a ligand-regulated cleavage mechanism by the HINT fold. FEBS Lett 2024; 598:864-874. [PMID: 38351630 DOI: 10.1002/1873-3468.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Vint proteins have been identified in unicellular metazoans as a novel hedgehog-related gene family, merging the von Willebrand factor type A domain and the Hedgehog/INTein (HINT) domains. We present the first three-dimensional structure of the Vint domain from Tetrahymena thermophila corresponding to the auto-processing domain of hedgehog proteins, shedding light on the unique features, including an adduct recognition region (ARR). Our results suggest a potential binding between the ARR and sulfated glycosaminoglycans like heparin sulfate. Moreover, we uncover a possible regulatory role of the ARR in the auto-processing by Vint domains, expanding our understanding of the HINT domain evolution and their use in biotechnological applications. Vint domains might have played a crucial role in the transition from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Finland
| | - Hannes M Beyer
- Institute of Biotechnology, University of Helsinki, Finland
| | | | - Mi Li
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, MD, USA
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
3
|
Xu Z, Zhang X, Pal C, Rozners E, Callahan BP. Enzyme Fragment Complementation Driven by Nucleic Acid Hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572427. [PMID: 38187717 PMCID: PMC10769296 DOI: 10.1101/2023.12.19.572427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A modified protein fragment complementation assay has been designed and validated as a gain-of-signal biosensor for nucleic acid:nucleic acid interactions. The assay uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified at their C-termini to steramers, sterol-modified oligodeoxynucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, served as a self-cleaving catalyst for these bioconjugations. In the presence of ssDNA or RNA with segments complementary to the steramers and adjacent to one another, the two NanoBiT fragments productively associate, reconstituting NanoBiT enzyme activity. NanoBiT luminescence in samples containing nM ssDNA or RNA template exceeded background by 30-fold and as high as 120-fold depending on assay conditions. A unique feature of this detection system is the absence of a self-labeling domain in the NanoBiT bioconjugates. Eliminating that extraneous bulk broadens the detection range from short oligos to full-length mRNA.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Chandan Pal
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Brian P. Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| |
Collapse
|
4
|
Tota EM, Devaraj NK. RNA-TAG Mediated Protein-RNA Conjugation. Chembiochem 2023; 24:e202300454. [PMID: 37500587 PMCID: PMC11182364 DOI: 10.1002/cbic.202300454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Combinations of biological macromolecules can provide researchers with precise control and unique methods for regulating, studying, and manipulating cellular processes. For instance, combining the unmatched encodability afforded by nucleic acids with the diverse functionality of proteins has transformed our approach to solving several problems in chemical biology. Despite these benefits, there remains a need for new methods to site-specifically generate conjugates between different classes of biomolecules. Here we present a fully enzymatic strategy for combining nucleic acids and proteins using SNAP-tag and RNA-TAG (transglycosylation at guanosine) technologies via a bifunctional preQ1-benzylguanine small molecule probe. We demonstrate the robust ability of this technology to assemble site-specific SNAP-tag - RNA conjugates with RNAs of varying length and use our conjugation strategy to recruit an endonuclease to an RNA of interest for targeted degradation. We foresee that combining SNAP-tag and RNA-TAG will facilitate researchers to predictably engineer novel macromolecular complexes.
Collapse
Affiliation(s)
- Ember M Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, CA 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Watson EE, Winssinger N. Synthesis of Protein-Oligonucleotide Conjugates. Biomolecules 2022; 12:biom12101523. [PMID: 36291732 PMCID: PMC9599799 DOI: 10.3390/biom12101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids and proteins form two of the key classes of functional biomolecules. Through the ability to access specific protein-oligonucleotide conjugates, a broader range of functional molecules becomes accessible which leverages both the programmability and recognition potential of nucleic acids and the structural, chemical and functional diversity of proteins. Herein, we summarize the available conjugation strategies to access such chimeric molecules and highlight some key case study examples within the field to showcase the power and utility of such technology.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (E.E.W.); (N.W.)
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, CH-1205 Geneva, Switzerland
- Correspondence: (E.E.W.); (N.W.)
| |
Collapse
|
6
|
Kandel N, Wang C. Hedgehog Autoprocessing: From Structural Mechanisms to Drug Discovery. Front Mol Biosci 2022; 9:900560. [PMID: 35669560 PMCID: PMC9163320 DOI: 10.3389/fmolb.2022.900560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) signaling plays pivotal roles in embryonic development. In adults, Hh signaling is mostly turned off but its abnormal activation is involved in many types of cancer. Hh signaling is initiated by the Hh ligand, generated from the Hh precursor by a specialized autocatalytic process called Hh autoprocessing. The Hh precursor consists of an N-terminal signaling domain (HhN) and a C-terminal autoprocessing domain (HhC). During Hh autoprocessing, the precursor is cleaved between N- and C-terminal domain followed by the covalent ligation of cholesterol to the last residue of HhN, which subsequently leads to the generation of Hh ligand for Hh signaling. Hh autoprocessing is at the origin of canonical Hh signaling and precedes all downstream signaling events. Mutations in the catalytic residues in HhC can lead to congenital defects such as holoprosencephaly (HPE). The aim of this review is to provide an in-depth summary of the progresses and challenges towards an atomic level understanding of the structural mechanisms of Hh autoprocessing. We also discuss drug discovery efforts to inhibit Hh autoprocessing as a new direction in cancer therapy.
Collapse
Affiliation(s)
- Nabin Kandel
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- *Correspondence: Chunyu Wang,
| |
Collapse
|
7
|
Hossain MS, Zhang Z, Ashok S, Jenks AR, Lynch CJ, Hougland JL, Mozhdehi D. Temperature-Responsive Nano-Biomaterials from Genetically Encoded Farnesylated Disordered Proteins. ACS APPLIED BIO MATERIALS 2022; 5:1846-1856. [PMID: 35044146 PMCID: PMC9115796 DOI: 10.1021/acsabm.1c01162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Despite broad interest in understanding the biological implications of protein farnesylation in regulating different facets of cell biology, the use of this post-translational modification to develop protein-based materials and therapies remains underexplored. The progress has been slow due to the lack of accessible methodologies to generate farnesylated proteins with broad physicochemical diversities rapidly. This limitation, in turn, has hindered the empirical elucidation of farnesylated proteins' sequence-structure-function rules. To address this gap, we genetically engineered prokaryotes to develop operationally simple, high-yield biosynthetic routes to produce farnesylated proteins and revealed determinants of their emergent material properties (nano-aggregation and phase-behavior) using scattering, calorimetry, and microscopy. These outcomes foster the development of farnesylated proteins as recombinant therapeutics or biomaterials with molecularly programmable assembly.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sudhat Ashok
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ashley R. Jenks
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
8
|
Zhang X, Kotikam V, Rozners E, Callahan BP. Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid. Chembiochem 2022; 23:e202100594. [PMID: 34890095 PMCID: PMC8961972 DOI: 10.1002/cbic.202100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Indexed: 01/16/2023]
Abstract
Enzymatic beacons, or E-beacons, are 1 : 1 bioconjugates of the nanoluciferase enzyme linked covalently at its C-terminus to hairpin forming ssDNA equipped with a dark quencher. We prepared E-beacons biocatalytically using HhC, the promiscuous Hedgehog C-terminal protein-cholesterol ligase. HhC attached nanoluciferase site-specifically to mono-sterylated hairpin oligonucleotides, called steramers. Three E-beacon dark quenchers were evaluated: Iowa Black, Onyx-A, and dabcyl. Each quencher enabled sensitive, sequence-specific nucleic acid detection through enhanced E-beacon bioluminescence upon target hybridization. We assembled prototype dabcyl-quenched E-beacons specific for SARS-CoV-2. Targeting the E484 codon of the virus Spike protein, E-beacons (80×10-12 M) reported wild-type SARS-CoV-2 nucleic acid at ≥1×10-9 M by increased bioluminescence of 8-fold. E-beacon prepared for the SARS-CoV-2 E484K variant functioned with similar sensitivity. Both E-beacons could discriminate their target from the E484Q mutation of the SARS-CoV-2 Kappa variant. Along with mismatch specificity, E-beacons are two to three orders of magnitude more sensitive than synthetic molecular beacons.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| |
Collapse
|
9
|
Zhang X, Kotikam V, Rozners E, Callahan BP. Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid and Potential Utility for SARS-CoV-2 Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.30.458287. [PMID: 34494022 PMCID: PMC8423218 DOI: 10.1101/2021.08.30.458287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enzymatic beacons, or E-beacons, are 1:1 bioconjugates of the nanoluciferase enzyme linked covalently at its C-terminus to hairpin forming DNA oligonucleotides equipped with a dark quencher. We prepared E-beacons biocatalytically using the promiscuous "hedgehog" protein-cholesterol ligase, HhC. Instead of cholesterol, HhC attached nanoluciferase site-specifically to mono-sterylated hairpin DNA, prepared in high yield by solid phase synthesis. We tested three potential E-beacon dark quenchers: Iowa Black, Onyx-A, and dabcyl. Prototype E-beacon carrying each of those quenchers provided sequence-specific nucleic acid sensing through turn-on bioluminescence. For practical application, we prepared dabcyl-quenched E-beacons for potential use in detecting the COVID-19 virus, SARS-CoV-2. Targeting the E484 codon of the SARS-CoV-2 Spike protein, E-beacons (80 × 10 -12 M) reported wild-type SARS-CoV-2 nucleic acid at ≥1 × 10 -9 M with increased bioluminescence of 8-fold. E-beacon prepared for the E484K variant of SARS-CoV-2 functioned with similar sensitivity. These E-beacons could discriminate their complementary target from nucleic acid encoding the E484Q mutation of the SARS-CoV-2 Kappa variant. Along with specificity, detection sensitivity with E-beacons is two to three orders of magnitude better than synthetic molecular beacons, rivaling the most sensitive nucleic acid detection agents reported to date.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
10
|
Mafi A, Purohit R, Vielmas E, Lauinger AR, Lam B, Cheng YS, Zhang T, Huang Y, Kim SK, Goddard WA, Ondrus AE. Hedgehog proteins create a dynamic cholesterol interface. PLoS One 2021; 16:e0246814. [PMID: 33630857 PMCID: PMC7906309 DOI: 10.1371/journal.pone.0246814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
During formation of the Hedgehog (Hh) signaling proteins, cooperative activities of the Hedgehog INTein (Hint) fold and Sterol Recognition Region (SRR) couple autoproteolysis to cholesterol ligation. The cholesteroylated Hh morphogens play essential roles in embryogenesis, tissue regeneration, and tumorigenesis. Despite the centrality of cholesterol in Hh function, the full structure of the Hint-SRR ("Hog") domain that attaches cholesterol to the last residue of the active Hh morphogen remains enigmatic. In this work, we combine molecular dynamics simulations, photoaffinity crosslinking, and mutagenesis assays to model cholesterolysis intermediates in the human Sonic Hedgehog (hSHH) protein. Our results provide evidence for a hydrophobic Hint-SRR interface that forms a dynamic, non-covalent cholesterol-Hog complex. Using these models, we suggest a unified mechanism by which Hh proteins can recruit, sequester, and orient cholesterol, and offer a molecular basis for the effects of disease-causing hSHH mutations.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Rahul Purohit
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Erika Vielmas
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Alexa R. Lauinger
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Brandon Lam
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Yu-Shiuan Cheng
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Tianyi Zhang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Yiran Huang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Soo-Kyung Kim
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - William A. Goddard
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AEO); (WAG)
| | - Alison E. Ondrus
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AEO); (WAG)
| |
Collapse
|
11
|
Kamgang Nzekoue F, Henle T, Caprioli G, Sagratini G, Hellwig M. Food Protein Sterylation: Chemical Reactions between Reactive Amino Acids and Sterol Oxidation Products under Food Processing Conditions. Foods 2020; 9:foods9121882. [PMID: 33348769 PMCID: PMC7766307 DOI: 10.3390/foods9121882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Sterols, especially cholesterol and phytosterols, are important components of food lipids. During food processing, such as heating, sterols, like unsaturated fatty acids, can be oxidized. Protein modification by secondary products of lipid peroxidation has recently been demonstrated in food through a process called lipation. Similarly, this study was performed to assess, for the first time, the possibility of reactions between food proteins and sterol oxidation products in conditions relevant for food processing. Therefore, reaction models consisting of oxysterol (cholesterol 5α,6α-epoxide) and reactive amino acids (arginine, lysine, and methionine) were incubated in various conditions of concentration (0–8 mM), time (0–120 min), and temperature (30–180 °C). The identification of lysine adducts through thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) with a diode array detector (DAD), and electrospray ionization (ESI) mass spectrometry (MS) evidenced a reaction with lysine. Moreover, the HPLC-ESI with tandem mass spectrometry (MS/MS) analyses allowed observation of the compound, whose mass to charge ratio m/z 710.5 and fragmentation patterns corresponded to the reaction product [M + H]+ between cholesterol-5α,6α-epoxide and the ε-amino-group of Nα-benzoylglycyl-l-lysine. Moreover, kinetic studies between Nα-benzoylglycyl-l-lysine as a model for protein-bound lysine and cholesterol 5α,6α-epoxide were performed, showing that the formation of lysine adducts strongly increases with time, temperature, and oxysterol level. This preliminary study suggests that in conditions commonly reached during food processing, sterol oxidation products could react covalently with protein-bound lysine, causing protein modifications.
Collapse
Affiliation(s)
- Franks Kamgang Nzekoue
- School of Pharmacy, University of Camerino, Via Sant Agostino 1, 62032 Camerino, Italy; (F.K.N.); (G.C.)
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (T.H.); (M.H.)
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant Agostino 1, 62032 Camerino, Italy; (F.K.N.); (G.C.)
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant Agostino 1, 62032 Camerino, Italy; (F.K.N.); (G.C.)
- Correspondence: ; Tel.: +39-0737-402238
| | - Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (T.H.); (M.H.)
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Hossain MS, Maller C, Dai Y, Nangia S, Mozhdehi D. Non-canonical lipoproteins with programmable assembly and architecture. Chem Commun (Camb) 2020; 56:10281-10284. [PMID: 32734969 DOI: 10.1039/d0cc03271a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substrate promiscuity of an acyltransferase is leveraged to synthesize artificial lipoproteins bearing a non-canonical PTM (ncPTM). The non-canonical functionality of these lipoproteins results in a distinctive hysteretic assembly-absent from the canonical lipoproteins-and is used to prepare hybrid multiblock materials with precise and programmable patterns of amphiphilicity. This study demonstrates the promise of expanding the repertoire of PTMs for the development of nanomaterials with a unique assembly and function.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244, USA.
| | | | | | | | | |
Collapse
|
13
|
Dual roles of the sterol recognition region in Hedgehog protein modification. Commun Biol 2020; 3:250. [PMID: 32440000 PMCID: PMC7242414 DOI: 10.1038/s42003-020-0977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Nature provides a number of mechanisms to encode dynamic information in biomolecules. In metazoans, there exist rare chemical modifications that occur in entirely unique regimes. One such example occurs in the Hedgehog (Hh) morphogens, proteins singular across all domains of life for the nature of their covalent ligation to cholesterol. The isoform- and context-specific efficiency of this ligation profoundly impacts the activity of Hh morphogens and represents an unexplored facet of Hh ligand-dependent cancers. To elucidate the chemical mechanism of this modification, we have defined roles of the uncharacterized sterol recognition region (SRR) in Hh proteins. We use a combination of sequence conservation, directed mutagenesis, and biochemical assays to specify residues of the SRR participate in cellular and biochemical aspects of Hh cholesterolysis. Our investigations offer a functional portrait of this region, providing opportunities to identify parallel reactivity in nature and a template to design tools in chemical biology.
Collapse
|