1
|
van Os WL, Wielaert L, Alter C, Davidović D, Šachl R, Kock T, González UU, Arias-Alpizar G, Vigario FL, Knol RA, Kuster R, Romeijn S, Mora NL, Detampel P, Hof M, Huwyler J, Kros A. Lipid conjugate dissociation analysis improves the in vivo understanding of lipid-based nanomedicine. J Control Release 2024; 371:85-100. [PMID: 38782063 DOI: 10.1016/j.jconrel.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Lipid conjugates have advanced the field of lipid-based nanomedicine by promoting active-targeting (ligand, peptide, antibody), stability (PEGylation), controlled release (lipoid prodrug), and probe-based tracking (fluorophore). Recent findings indicate lipid conjugates dissociating from nanomedicine upon encountering a biological environment. Yet, implications for (pre)clinical outcomes remain unclear. In this study, using the zebrafish model (Danio rerio), we investigated the fate of liposome-incorporated lipid fluorophore conjugates (LFCs) after intravenous (IV) administration. LFCs having a bilayer mismatch and relatively polar fluorophore revealed counter-predictive outcomes for Caelyx/Doxil (clearance vs. circulating) and AmBisome-like liposomes (scavenger endothelial cell vs. macrophage uptake). Findings on LFC (mis)match for Caelyx/Doxil-like liposomes were supported by translational intravital imaging studies in mice. Importantly, contradicting observations suggest to originate from LFC dissociation in vivo, which was investigated by Asymmetric Flow Field-Flow Fractionation (AF4) upon liposome-serum incubation in situ. Our data suggests that LFCs matching with the liposome bilayer composition - that did not dissociate upon serum incubation - revealed improved predictive outcomes for liposome biodistribution profiles. Altogether, this study highlights the critical importance of fatty acid tail length and headgroup moiety when selecting lipid conjugates for lipid-based nanomedicine.
Collapse
Affiliation(s)
- Winant L van Os
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Laura Wielaert
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Claudio Alter
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - David Davidović
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Thomas Kock
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Urimare Ugueto González
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Gabriela Arias-Alpizar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Fernando Lozano Vigario
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Renzo A Knol
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Rick Kuster
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Stefan Romeijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Nestor Lopez Mora
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Science, University of Basel, Switzerland
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
2
|
Simonsen JB. Lipid nanoparticle-based strategies for extrahepatic delivery of nucleic acid therapies - challenges and opportunities. J Control Release 2024; 370:763-772. [PMID: 38621638 DOI: 10.1016/j.jconrel.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
The advent of lipid nanoparticles (LNPs) containing ionizable cationic lipids has enabled the encapsulation, stabilization, and intracellular delivery of nucleic acid payloads, leading to FDA-approved siRNA-based therapy and mRNA-based vaccines. Other nucleic acid-based therapeutic modalities, including protein replacement and CRISPR-mediated gene knockout and editing, are being tested in clinical trials, in many cases, for the treatment of liver-related diseases. However, to fully exploit these therapies beyond the liver, improvements in their delivery to extrahepatic targets are needed. Towards this end, both active targeting strategies based on targeting ligands grafted onto LNPs and passive targeting relying on physicochemical LNP parameters such as surface composition, charge, and size are being evaluated. Often, the latter strategy depends on the interaction of LNPs with blood components, forming what is known as the biomolecular corona. Here, I discuss potential challenges related to current LNP-based targeting strategies and the studies of the biomolecular corona on LNPs. I propose potential solutions to overcome some of these obstacles and present approaches currently being tested in preclinical and clinical studies, which face fewer biological barriers than traditional organ-targeting approaches.
Collapse
|
3
|
Liu K, Lázaro-Ibáñez E, Lerche M, Lindén D, Salvati A, Sabirsh A. Reply to: Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications. Nat Commun 2024; 15:3853. [PMID: 38724506 PMCID: PMC11082221 DOI: 10.1038/s41467-024-47726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
4
|
Simonsen JB. Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications. Nat Commun 2024; 15:3852. [PMID: 38724528 PMCID: PMC11082148 DOI: 10.1038/s41467-024-47724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
|
5
|
Correa Y, Ravel M, Imbert M, Waldie S, Clifton L, Terry A, Roosen‐Runge F, Lagerstedt JO, Moir M, Darwish T, Cárdenas M, Del Giudice R. Lipid exchange of apolipoprotein A-I amyloidogenic variants in reconstituted high-density lipoprotein with artificial membranes. Protein Sci 2024; 33:e4987. [PMID: 38607188 PMCID: PMC11010956 DOI: 10.1002/pro.4987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.
Collapse
Affiliation(s)
- Yubexi Correa
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Mathilde Ravel
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Marie Imbert
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Sarah Waldie
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Luke Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities CouncilRutherford Appleton Laboratory, Harwell Science and Innovation CampusDidcotUK
| | - Ann Terry
- MAX IV LaboratoryCoSAXS Beamline, Lund UniversityLundSweden
| | - Felix Roosen‐Runge
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| | - Jens O. Lagerstedt
- Islet Cell Exocytosis, Department of Clinical Sciences in Malmö, Lund University Diabetes CentreLund UniversityMalmöSweden
- Rare Endocrine Disorders, Research and Early DevelopmentNovo NordiskCopenhagenDenmark
| | - Michael Moir
- National Deuteration FacilityAustralian Nuclear Science and Technology Organization (ANSTO)Lucas HeightsNew South WalesAustralia
| | - Tamim Darwish
- National Deuteration FacilityAustralian Nuclear Science and Technology Organization (ANSTO)Lucas HeightsNew South WalesAustralia
- Faculty of Science and TechnologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Marité Cárdenas
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
- Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC))LeioaSpain
| | - Rita Del Giudice
- Biofilm – Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and SocietyMalmö UniversityMalmöSweden
| |
Collapse
|
6
|
Dehghankelishadi P, Badiee P, Maritz MF, Dmochowska N, Thierry B. Bosutinib high density lipoprotein nanoformulation has potent tumour radiosensitisation effects. J Nanobiotechnology 2023; 21:102. [PMID: 36945003 PMCID: PMC10028769 DOI: 10.1186/s12951-023-01848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Disruption of the cell cycle is among the most effective approach to increase tumour cells' radio-sensitivity. However, the presence of dose-limiting side effects hampers the clinical use of tyrosine kinase inhibitors targeting the cell cycle. Towards addressing this challenge, we identified a bosutinib nanoformulation within high density lipoprotein nanoparticles (HDL NPs) as a promising radiosensitiser. Bosutinib is a kinase inhibitor clinically approved for the treatment of chronic myeloid leukemia that possesses radiosensitising properties through cell cycle checkpoint inhibition. We found that a remarkably high bosutinib loading (> 10%) within HDL NPs could be reliably achieved under optimal preparation conditions. The radiosensitisation activity of the bosutinib-HDL nanoformulation was first assessed in vitro in UM-SCC-1 head and neck squamous cell carcinoma (HNSCC) cells, which confirmed efficient disruption of the radiation induced G2/M cell cycle arrest. Interestingly, the bosutinib nanoformulation out-performed free bosutinib, likely because of the specific affinity of HDL NPs with tumour cells. The combination of bosutinib-HDL NPs and radiotherapy significantly controlled tumour growth in an immunocompetent murine HNSCC model. The bosutinib-HDL nanoformulation also enhanced the radiation induced immune response through the polarisation of tumour associated macrophages towards proinflammatory phenotypes.
Collapse
Affiliation(s)
- Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA, 5000, Australia
| | - Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA, 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia.
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA, 5000, Australia.
| |
Collapse
|
7
|
Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022; 188:114416. [PMID: 35787388 PMCID: PMC9250827 DOI: 10.1016/j.addr.2022.114416] [Citation(s) in RCA: 333] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022]
Abstract
Lipid nanoparticles (LNPs) play an important role in mRNA vaccines against COVID-19. In addition, many preclinical and clinical studies, including the siRNA-LNP product, Onpattro®, highlight that LNPs unlock the potential of nucleic acid-based therapies and vaccines. To understand what is key to the success of LNPs, we need to understand the role of the building blocks that constitute them. In this Review, we discuss what each lipid component adds to the LNP delivery platform in terms of size, structure, stability, apparent pKa, nucleic acid encapsulation efficiency, cellular uptake, and endosomal escape. To explore this, we present findings from the liposome field as well as from landmark and recent articles in the LNP literature. We also discuss challenges and strategies related to in vitro/in vivo studies of LNPs based on fluorescence readouts, immunogenicity/reactogenicity, and LNP delivery beyond the liver. How these fundamental challenges are pursued, including what lipid components are added and combined, will likely determine the scope of LNP-based gene therapies and vaccines for treating various diseases.
Collapse
Affiliation(s)
- Camilla Hald Albertsen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Jayesh A Kulkarni
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall, 4th Floor, Vancouver BC V6T 1Z3, Canada
| | - Dominik Witzigmann
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall, 4th Floor, Vancouver BC V6T 1Z3, Canada
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Jens B Simonsen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark.
| |
Collapse
|
8
|
Botha J, Handberg A, Simonsen JB. Lipid-based strategies used to identify extracellular vesicles in flow cytometry can be confounded by lipoproteins: Evaluations of annexin V, lactadherin, and detergent lysis. J Extracell Vesicles 2022; 11:e12200. [PMID: 35362259 PMCID: PMC8971177 DOI: 10.1002/jev2.12200] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
Flow cytometry (FCM) is a popular method used in characterisation of extracellular vesicles (EVs). Circulating EVs are often identified by FCM by exploiting the lipid nature of EVs by staining with Annexin V (Anx5) or lactadherin against the membrane phospholipid phosphatidylserine (PS) and evaluating the specificity of the labels by detergent lysis of EVs. Here, we investigate whether PS labelling and detergent lysis approaches are confounded by lipoproteins, another family of lipid-based nanoparticles found in blood, in both frozen and fresh blood plasma. We demonstrated that Anx5 and lactadherin in addition to EVs stained ApoB-containing lipoproteins, identified by the use of fluorophore-labelled polyclonal ApoB-antibody, and that Anx5 had a significantly larger tendency for labelling lipoprotein-bound PS than lactadherin. Furthermore, detergent lysis resulted in a decrease in both EV and lipoprotein events and especially lipoproteins positive for either Anx5 or lactadherin. Taken together, our findings pose concerns to the use of lipid-based strategies in identifying EVs by FCM and support the use of transmembrane proteins such as tetraspannins to distinguish EVs from lipoproteins.
Collapse
Affiliation(s)
- Jaco Botha
- Department of Clinical BiochemistryAalborg University Hospital, North Denmark RegionAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | - Aase Handberg
- Department of Clinical BiochemistryAalborg University Hospital, North Denmark RegionAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Jens B. Simonsen
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
9
|
Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13081151. [PMID: 34452113 PMCID: PMC8398618 DOI: 10.3390/pharmaceutics13081151] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (H.Z.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (H.Z.); (W.W.)
| |
Collapse
|
10
|
Simonsen JB, Kromann EB. Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies - A commentary. J Control Release 2021; 335:660-667. [PMID: 34089794 DOI: 10.1016/j.jconrel.2021.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Fluorescence-based techniques are prevalent in studies of nanomedicine-targeting to cells and tissues. However, fluorescence-based studies are rarely quantitative, thus prohibiting direct comparisons of nanomedicine-performance across studies. With this Commentary, we aim to provoke critical thinking about experimental design by treating some often-overlooked pitfalls in 'quantitative' fluorescence-based experimentation. Focusing on fluorescence-labeled nanoparticles, we cover mechanisms like solvent-interactions and fluorophore-dissociation, which disqualify the assumption that 'a higher fluorescence readout' translates directly to 'a better targeting efficacy'. With departure in recent literature, we propose guidelines for circumventing these pitfalls in studies of tissue-accumulation and cell-uptake, thus covering fluorescence-based techniques like bulk solution fluorescence measurements, fluorescence microscopy, flow cytometry, and infrared fluorescence imaging. With this, we hope to lay a foundation for more 'quantitative thinking' during experimental design, enabling (for example) the estimation and reporting of actual numbers of fluorescent nanoparticles accumulated in cells and organs.
Collapse
Affiliation(s)
- Jens B Simonsen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | - Emil B Kromann
- Department of Health Technology, Section for Biomimetics, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Tereshkina YA, Kostryukova LV, Torkhovskaya TI, Khudoklinova YY, Tikhonova EG. [Plasma high density lipoproteins phospholipds as an indirect indicator of their cholesterol efflux capacity - new suspected atherosclerosis risk factor]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:119-129. [PMID: 33860768 DOI: 10.18097/pbmc20216702119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High density lipoproteins (HDL) are a unique natural structure, protecting the body from the development of atherosclerotic vascular lesions and cardiovascular diseases due to this ability to remove cholesterol from cells. Plasma HDL level estimated by their cholesterol content, is a common lipid parameter, and its decrease is considered as an established atherosclerosis risk factor. However, a number of studies have shown the absence of positive clinical effects after drug-induced increase in HDL cholesterol. There is increasing evidence that not only HDL concentration, but also HDL properties, considered in this review are important. Many studies showed the decrease of HDL cholesterol efflux capacity in patients with coronary heart diseases and its association with disease severity. Some authors consider a decrease of this HDL capacity as a new additional risk factor of atherosclerosis. The review summarizes existing information on various protein and lipid components of HDL with a primary emphasis on the HDL. Special attention is paid to correlation between the HDL cholesterol efflux capacity and HDL phospholipids and the ratio "phospholipids/free cholesterol". The accumulated information indicates importance of evaluation in the HDL fraction not only in terms of their cholesterol, but also phospholipids. In addition to the traditionally used lipid criteria, this would provide more comprehensive information about the activity of the reverse cholesterol transport process in the body and could contribute to the targeted correction of the detected disorders.
Collapse
|
12
|
Gupta A, Sharma R, Kuche K, Jain S. Exploring the therapeutic potential of the bioinspired reconstituted high density lipoprotein nanostructures. Int J Pharm 2021; 596:120272. [DOI: 10.1016/j.ijpharm.2021.120272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
|
13
|
Pedersbæk D, Krogager L, Albertsen CH, Ringgaard L, Hansen AE, Jønsson K, Larsen JB, Kjær A, Andresen TL, Simonsen JB. Effect of apoA-I PEGylation on the Biological Fate of Biomimetic High-Density Lipoproteins. ACS OMEGA 2021; 6:871-880. [PMID: 33458538 PMCID: PMC7808163 DOI: 10.1021/acsomega.0c05468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 05/05/2023]
Abstract
Biomimetic high-density lipoproteins (b-HDL) have in the past two decades been applied for various drug delivery applications. As b-HDL inherently have relatively long circulation half-life and high tumor accumulation, this has inspired researchers to use b-HDL to selectively deliver drugs to tumors. PEGylation of the b-HDL has been pursued to increase the circulation half-life and therapeutic efficacy even further. The b-HDL consist of lipids stabilized by a protein/peptide scaffold, and while PEGylation of the scaffold has been shown to greatly increase the circulation half-life of the scaffold, the effect of PEGylation of the lipids is much less significant. Still, it remains to be evaluated how the biological fate, including cellular uptake, biodistribution, and circulation half-life, of the b-HDL lipids is affected by PEGylation of the b-HDL scaffold. We studied this with apolipoprotein A-I (apoA-I)-based b-HDL and mono-PEGylated b-HDL (PEG b-HDL) both in vitro and in vivo. We found that PEGylation of the b-HDL scaffold only seemed to have minimal effect on the biological fate of the lipids. Both b-HDL and PEG b-HDL overall shared similar biological fates, which includes cellular uptake through the scavenger receptor class B type 1 (SR-BI) and relatively high tumor accumulation. This highlights that b-HDL are dynamic particles, and the biological fates of the b-HDL components (lipids and scaffold) can differ. A phenomenon that may also apply for other multicomponent nanoparticles.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Louise Krogager
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Camilla Hald Albertsen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lars Ringgaard
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anders E. Hansen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Katrine Jønsson
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jannik B. Larsen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andreas Kjær
- Department
of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular
Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas L. Andresen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jens B. Simonsen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Pedersbæk D, Simonsen JB. A systematic review of the biodistribution of biomimetic high-density lipoproteins in mice. J Control Release 2020; 328:792-804. [PMID: 32971201 DOI: 10.1016/j.jconrel.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
For the past two decades, biomimetic high-density lipoproteins (b-HDL) have been used for various drug delivery applications. The b-HDL mimic the endogenous HDL, and therefore possess many attractive features for drug delivery, including high biocompatibility, biodegradability, and ability to transport and deliver their cargo (e.g. drugs and/or imaging agents) to specific cells and tissues that are recognized by HDL. The b-HDL designs reported in the literature often differ in size, shape, composition, and type of incorporated cargo. However, there exists only limited insight into how the b-HDL design dictates their biodistribution. To fill this gap, we conducted a comprehensive systematic literature search of biodistribution studies using various designs of apolipoprotein A-I (apoA-I)-based b-HDL (i.e. b-HDL with apoA-I, apoA-I mutants, or apoA-I mimicking peptides). We carefully screened 679 papers (search hits) for b-HDL biodistribution studies in mice, and ended up with 24 relevant biodistribution profiles that we compared according to b-HDL design. We show similarities between b-HDL biodistribution studies irrespectively of the b-HDL design, whereas the biodistribution of the b-HDL components (lipids and scaffold) differ significantly. The b-HDL lipids primarily accumulate in liver, while the b-HDL scaffold primarily accumulates in the kidney. Furthermore, both b-HDL lipids and scaffold accumulate well in the tumor tissue in tumor-bearing mice. Finally, we present essential considerations and strategies for b-HDL labeling, and discuss how the b-HDL biodistribution can be tuned through particle design and administration route. Our meta-analysis and discussions provide a detailed overview of the fate of b-HDL in mice that is highly relevant when applying b-HDL for drug delivery or in vivo imaging applications.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark
| | - Jens B Simonsen
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Li J, Han M, Li J, Ge Z, Wang Q, Zhou K, Yin X. Sterically stabilized recombined HDL composed of modified apolipoprotein A-I for efficient targeting toward glioma cells. Drug Deliv 2020; 27:530-541. [PMID: 32241173 PMCID: PMC7170284 DOI: 10.1080/10717544.2020.1745330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023] Open
Abstract
Reconstituted high density lipoprotein (rHDL) has been regarded as a promising brain-targeting vehicle for anti-glioma drugs under the mediation of apolipoprotein A-I (apoA-I). However, some stability issues relating to drug leakage and consequent reduced targeting efficiency in the course of discoidal rHDL (d-rHDL) circulating in blood hinder its broad application. The objective of the study was to develop a novel stabilized d-rHDL by replacing cholesterol and apoA-I with mono-cholesterol glutarate (MCG) modified apoA-I (termed as mA) and to evaluate its allosteric behavior and glioma targeting. MCG was synthesized through esterifying the hydroxyl of cholesterol with glutaric anhydride and characterized by FI-IR and 1H NMR. d-rHDL assembled with mA (termed as m-d-rHDL) presented similar properties such as minute particle size and disk-like appearance resembling nascent HDL. Morphological transformation observation and in vitro release plots convinced that the modification of cholesterol could effectively inhibit the remolding of d-rHDL. The uptake of m-d-rHDL by LCAT-pretreated bEND.3 cells was significantly higher than that of d-rHDL, thereby serving as another proof for the capability of m-d-rHDL in enhancing targeting property. Besides, apoA-I anchoring into m-d-rHDL played a critical role in the endocytosis process into bEND.3 cells and C6 cells, which implied the possibility of traversing blood brain barrier and accumulating in the brain and glioma. These results suggested that the modification toward cholesterol to improve the stability of d-rHDL is advantageous, and that this obtained m-d-rHDL revealed great potential for realization of suppressing the remolding of d-rHDL in the brain-targeted treatment of glioma for drug delivery.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Kai Zhou
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xiaoxing Yin
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
Niora M, Pedersbæk D, Münter R, Weywadt MFDV, Farhangibarooji Y, Andresen TL, Simonsen JB, Jauffred L. Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids. ACS OMEGA 2020; 5:21162-21171. [PMID: 32875252 PMCID: PMC7450641 DOI: 10.1021/acsomega.0c02879] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
Most tumor-targeted drug delivery systems must overcome a large variety of physiological barriers before reaching the tumor site and diffuse through the tight network of tumor cells. Many studies focus on optimizing the first part, the accumulation of drug carriers at the tumor site, ignoring the penetration efficiency, i.e., a measure of the ability of a drug delivery system to overcome tumor surface adherence and uptake. We used three-dimensional (3D) tumor spheroids in combination with light-sheet fluorescence microscopy in a head-to-head comparison of a variety of commonly used lipid-based nanoparticles, including liposomes, PEGylated liposomes, lipoplexes, and reconstituted high-density lipoproteins (rHDL). Whilst PEGylation of liposomes only had minor effects on the penetration efficiency, we show that lipoplexes are mainly associated with the periphery of tumor spheroids, possibly due to their positive surface charge, leading to fusion with the cells at the spheroid surface or aggregation. Surprisingly, the rHDL showed significantly higher penetration efficiency and high accumulation inside the spheroid. While these findings indeed could be relevant when designing novel drug delivery systems based on lipid-based nanoparticles, we stress that the used platform and the detailed image analysis are a versatile tool for in vitro studies of the penetration efficiency of nanoparticles in tumors.
Collapse
Affiliation(s)
- Maria Niora
- The
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark
| | - Dennis Pedersbæk
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus Münter
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Thomas L. Andresen
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jens B. Simonsen
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Liselotte Jauffred
- The
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark
| |
Collapse
|
17
|
Pedersbæk D, Jønsson K, Madsen DV, Weller S, Bohn AB, Andresen TL, Simonsen JB. A quantitativeex vivostudy of the interactions between reconstituted high-density lipoproteins and human leukocytes. RSC Adv 2020; 10:3884-3894. [PMID: 35492676 PMCID: PMC9048990 DOI: 10.1039/c9ra08203d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the interactions between nanoparticles and immune cells is required for optimal design of nanoparticle-based drug delivery systems, either when aiming to avoid phagocytic clearance of the nanoparticles or promote an immune response by delivering therapeutic agents to specific immune cells. Several studies have suggested that reconstituted high-density lipoproteins (rHDL) are attractive drug delivery vehicles. However, detailed studies of rHDL interactions with circulating leukocytes are limited. Here, we evaluated the association of discoidal rHDL with leukocytes in human whole blood (HWB) using quantitative approaches. We found that while the rHDL of various lipid compositions associated preferentially with monocytes, the degree of association depended on the lipid composition. However, consistent with the long circulation half-life of rHDL, we show that only a minor fraction of the rHDL associated with the leukocytes. Furthermore, we used three-dimensional fluorescence microscopy and imaging flow cytometry to evaluate the possible internalization of rHDL cargo into the cells, and we show increased internalization of rHDL cargo in monocytes relative to granulocytes. The preferential rHDL association with monocytes and the internalization of rHDL cargo could possibly be mediated by the scavenger receptor class B type 1 (SR-BI), which we show is expressed to a higher extent on monocytes than on the other major leukocyte populations. Our work implies that drug-loaded rHDL can deliver its cargo to monocytes in circulation, which could lead to some off-target effects when using rHDL for systemic drug delivery, or it could pave the way for novel immunotherapeutic treatments aiming to target the monocytes. We used novel quantitative methods to study the interactions between reconstituted high-density lipoproteins (rHDL) and human leukocytes – showing that rHDL cargo are preferentially taken up by monocytes.![]()
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Katrine Jønsson
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Ditte V. Madsen
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Sven Weller
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Anja B. Bohn
- Department of Biomedicine
- Aarhus University
- 8000 Aarhus
- Denmark
| | - Thomas L. Andresen
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Jens B. Simonsen
- Department of Health Technology
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| |
Collapse
|