1
|
Lu M, Cheng N. Experimental and computational techniques to investigate the protein resistance of zwitterionic polymers. J Mater Chem B 2024; 13:103-116. [PMID: 39540623 DOI: 10.1039/d4tb01782j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Most surfaces undergo non-specific protein adsorption upon direct contact with protein-containing environments, resulting in the formation of a protein corona, and the nature and composition of the corona affect the properties of the material. Zwitterionic polymers have oppositely charged groups in their repeating units, which facilitate the formation of a hydration layer on the surface through electrostatic interactions. The hydration layer possesses a strong water-binding ability and can prevent protein adsorption. Therefore, the hydration effect of zwitterionic polymers has become a research focus, and many researchers have investigated this mechanism using experimental and computational methods. This paper reviews the experimental techniques and simulation methods to study the hydration effect of zwitterionic polymers and the advantages and disadvantages of different techniques are discussed.
Collapse
Affiliation(s)
- Mengyu Lu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
2
|
Snyder D, Emrick T. Embedding Thiols into Choline Phosphate Polymer Zwitterions. Macromol Rapid Commun 2024; 45:e2300690. [PMID: 38207336 DOI: 10.1002/marc.202300690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Indexed: 01/13/2024]
Abstract
The compositional scope of polymer zwitterions has grown significantly in recent years and now offers designer synthetic materials that are broadly applicable across numerous areas, including supracolloidal structures, electronic materials interfaces, and macromolecular therapeutics. Among recent developments in polymer zwitterion syntheses are those that allow insertion of reactive functionality directly into the zwitterionic moiety, yielding new monomer and polymer structures that hold potential for maximizing the impact of zwitterions on the macromolecular materials chemistry field. This manuscript describes the preparation of zwitterionic choline phosphate (CP) methacrylates containing either aromatic or aliphatic thiols embedded directly into the zwitterionic moiety. The polymerization of these functional CP methacrylates by reversible addition-fragmentation chain-transfer methodology yields polymeric zwitterionic thiols containing protected thiol functionality in the zwitterionic units. After polymerization, the protected thiols are liberated to yield thiol-rich polymer zwitterions which serve as precursors to subsequent reactions that produce polymer networks as well as polymer-protein bioconjugates.
Collapse
Affiliation(s)
- Deborah Snyder
- Polymer Science & Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, MA, 01003, USA
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
3
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Functional Zwitterionic Polyurethanes: State-of-the-Art Review. Macromol Rapid Commun 2024; 45:e2300606. [PMID: 38087799 DOI: 10.1002/marc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Recent advancements in bioengineering and medical devices have been greatly influenced and dominated by synthetic polymers, particularly polyurethanes (PUs). PUs offer customizable mechanical properties and long-term stability, but their inherent hydrophobic nature poses challenges in practically biological application processes, such as interface high friction, strong protein adsorption, and thrombosis. To address these issues, surface modifications of PUs for generating functionally hydrophilic layers have received widespread attention, but the durability of generated surface functionality is poor due to irreversible mechanical wear or biodegradation. As a result, numerous researchers have investigated bulk modification techniques to incorporate zwitterionic polymers or groups onto the main or side chains of PUs, thereby improving their hydrophilicity and biocompatibility. This comprehensive review presents an extensive overview of notable zwitterionic PUs (ZPUs), including those based on phosphorylcholine, sulfobetaine, and carboxybetaine. The review explores their wide range of biomedical applications, from blood-contacting devices to antibacterial coatings, fouling-resistant marine coatings, separation membranes, lubricated surfaces, and shape memory and self-healing materials. Lastly, the review summarizes the challenges and future prospects of ZPUs in biological applications.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
4
|
Zwitterionic polymers: addressing the barriers for drug delivery. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Shiomoto S, Inoue K, Higuchi H, Nishimura SN, Takaba H, Tanaka M, Kobayashi M. Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers. Biomacromolecules 2022; 23:2999-3008. [PMID: 35736642 DOI: 10.1021/acs.biomac.2c00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zwitterionic methacrylate polymers with either choline phosphate (CP) (poly(MCP)) or phosphorylcholine (PC) (poly(MPC)) side groups were analyzed to characterize the bound hydration water molecules as nonfreezing water (NFW), intermediate water (IW), or free water (FW). This characterization was carried out by differential scanning calorimetry (DSC) of polymer/water systems, and the enthalpy changes of cold crystallization and melting were determined. The electron pair orientation of CP is opposite to that of PC, and the former binds the alkyl terminal groups at the phosphate esters. The numbers of NFW and IW molecules per monomer unit of poly(MCP) with an isopropyl terminal group were estimated to be 10.7 and 11.3 mol/mol, respectively, which were slightly greater than those of the poly(MCP) bearing an ethyl terminal group. More NFW and IW molecules hydrated the phosphobetaine polyzwitterions, poly(MCP) and poly(MPC), compared with carboxybetaine and sulfobetaine polymers. Moreover, the hydration states of polyelectrolytes were compared with the zwitterionic polymers. Finally, we discuss the relationship between the amount of hydration water and bio-inert properties.
Collapse
Affiliation(s)
- Shohei Shiomoto
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Kaito Inoue
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Hayato Higuchi
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromitsu Takaba
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| |
Collapse
|
8
|
Nguyen TL, Mukai M, Ihara D, Takahara A, Yusa SI. Association Behavior of a Homopolymer Containing Choline Phosphonate Groups in Aqueous Solutions. CHEM LETT 2021. [DOI: 10.1246/cl.210601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thi Lien Nguyen
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280, Japan
| | - Masaru Mukai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819–0395, Japan
| | - Daiki Ihara
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819–0395, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819–0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819–0395, Japan
- International Institute for Carbon-Neutral Energy Research, 744 Motooka, Nishi-ku, Fukuoka 819–0395, Japan
- Research Center for Negative Emissions Technologies, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280, Japan
| |
Collapse
|
9
|
Zhou L, Triozzi A, Figueiredo M, Emrick T. Fluorinated Polymer Zwitterions: Choline Phosphates and Phosphorylcholines. ACS Macro Lett 2021; 10:1204-1209. [PMID: 35549047 DOI: 10.1021/acsmacrolett.1c00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among zwitterionic structures, the choline phosphate (CP) group is uniquely attractive for its ability to access novel chemical compositions that embed functional groups directly into the zwitterionic moiety. This paper describes the attachment of fluorinated alkyl groups to CP moieties, yielding zwitterionic monomers 1 and 2 that proved amenable to controlled free radical polymerization and the production of a new set of CP-containing fluorinated polymers and copolymers with phosphorylcholine (PC) zwitterions. This combination of fluorinated hydrocarbons and zwitterions affords novel, water-soluble polymeric amphiphiles that we have examined at fluid interfaces, as coatings, in cell culture, and in magnetic resonance imaging.
Collapse
Affiliation(s)
- Le Zhou
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Alexandria Triozzi
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Marxa Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Spatiotemporal Analysis of Hydration Mechanism in Sodium Alginate Matrix Tablets. MATERIALS 2021; 14:ma14030646. [PMID: 33573366 PMCID: PMC7866837 DOI: 10.3390/ma14030646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022]
Abstract
Methods of spatiotemporal characterization of nonequilibrated polymer based matrices are still immature and imperfect. The purpose of the study was to develop the methodology for the spatiotemporal characterization of water transport and properties in alginate tablets under hydration. The regions of low water content were spatially and temporally sampled using Karl Fisher and Differential Scanning Callorimetry (spatial distribution of freezing/nonfreezing water) with spatial resolution of 1 mm. In the regions of high water content, where sampling was infeasible due to gel/sol consistency, magnetic resonance imaging (MRI) enabled characterization with an order of magnitude higher spatial resolution. The minimally hydrated layer (MHL), infiltration layer (IL) and fully hydrated layer (FHL) were identified in the unilaterally hydrated matrices. The MHL gained water from the first hour of incubation (5–10% w/w) and at 4 h total water content was 29–39% with nonfreezing pool of 28–29%. The water content in the IL was 45–47% and at 4 h it reached ~50% with the nonfreezing pool of 28% and T2 relaxation time < 10 ms. The FHL consisted of gel and sol layer with water content of 85–86% with a nonfreezing pool of 11% at 4 h and T2 in the range 20–200 ms. Hybrid destructive/nondestructive analysis of alginate matrices under hydration was proposed. It allowed assessing the temporal changes of water distribution, its mobility and interaction with matrices in identified layers.
Collapse
|
11
|
Takahashi M, Shimizu A, Yusa S, Higaki Y. Lyotropic Morphology Transition of Double Zwitterionic Diblock Copolymer Aqueous Solutions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Masaya Takahashi
- Graduate School of Engineering Oita University 700 Dannoharu Oita 870‐1192 Japan
| | - Akane Shimizu
- Graduate School of Engineering Oita University 700 Dannoharu Oita 870‐1192 Japan
| | - Shin‐ichi Yusa
- Department of Applied Chemistry Graduate School of Engineering University of Hyogo 2167 Shosha, Himeji Hyogo 671‐2280 Japan
| | - Yuji Higaki
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University 700 Dannoharu Oita 870‐1192 Japan
| |
Collapse
|
12
|
Higaki Y, Kobayashi M, Takahara A. Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9015-9024. [PMID: 32677837 DOI: 10.1021/acs.langmuir.0c01672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyzwitterions have emerged as a new class of antifouling materials alternating poly(ethylene glycol). The exemplary biopassivation and lubrication behaviors are often attributed to the particular chemical structure of zwitterions, which involve a large dipole moment of the charged groups and a neutral net charge, while the hydration state and dynamics also associate with these characteristics. Polymer brushes composed of surface-tethered polyzwitterion chains produced by surface-initiated controlled radical polymerization have been developed as thin films which exhibit excellent antifouling and lubrication properties. In past decades, numerous studies have been devoted to examining the structure and dynamics of polyzwitterion brush chains in aqueous solutions. This feature article provides an overview of recent studies exploring the hydration state of polyzwitterion brushes with specular neutron reflectivity, highlights some newly published work on the nonuniform equilibrium structure, ion concentration dependence, ion specificity, and the effects of charge spacer length in the zwitterions, and discusses future perspective in this field.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | | |
Collapse
|