1
|
Zhang Y, Zhang M, Song H, Dai Q, Liu C. Tumor Microenvironment-Responsive Polymer-Based RNA Delivery Systems for Cancer Treatment. SMALL METHODS 2025; 9:e2400278. [PMID: 38803312 DOI: 10.1002/smtd.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleic acid (RNA) therapeutics offer a broad prospect in cancer treatment. However, their successful application requires overcoming various physiological barriers to effectively deliver RNAs to the target sites. Currently, a number of RNA delivery systems based on polymeric nanoparticles are developed to overcome these barriers in RNA delivery. This work provides an overview of the existing RNA therapeutics for cancer gene therapy, and particularly summarizes those that are entering the clinical phase. This work then discusses the core features and latest research developments of tumor microenvironment-responsive polymer-based RNA delivery carriers which are designed based on the pathological characteristics of the tumor microenvironment. Finally, this work also proposes opportunities for the transformation of RNA therapies into cancer immunotherapy methods in clinical applications.
Collapse
Affiliation(s)
- Yahan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Cooper RC, Wang J, Yang H. Injectable Dendrimer Hydrogel Delivers Melphalan in Both Conjugated and Free Forms for Retinoblastoma. Biomacromolecules 2024; 25:5928-5937. [PMID: 39189328 PMCID: PMC11443594 DOI: 10.1021/acs.biomac.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report the successful synthesis of an injectable dendrimer hydrogel (DH) carrying melphalan, a clinical drug for retinoblastoma treatment, in both conjugated and free forms. Polyamidoamine (PAMAM) dendrimer generation 5 (G5) is surface-modified with an acid-sensitive acetal-dibenzocyclooctyne linker and then undergoes azide-alkyne cycloaddition with melphalan-PEG-N3 conjugate to form G5-acetal-melphalan. During the DH gelation between G5-acetal-melphalan and PEG-diacrylate, free melphalan is added, resulting in a hydrogel (G5-acetal-melphalan-DH/melphalan) that carries the drug in both conjugated and free forms. Melphalan is slowly released from G5-acetal-melphalan-DH/melphalan, with the conjugated melphalan released more quickly at pH 5.3 due to acid-triggered acetal bond cleavage. The formulation's in vitro safety and efficacy were established on human corneal epithelia (HCE-2) and retinoblastoma cells (Y79). In an in vivo Y79 tumor xenograft model of retinoblastoma, intratumorally injected G5-melphalan-DH formulation prolonged tumor suppression. This injectable, multimodal, pH-responsive formulation shows promise for intravitreal injection to treat retinoblastoma.
Collapse
Affiliation(s)
- Remy C. Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
3
|
Singh N, Marwaha D, Gautam S, Rai N, Tiwari P, Sharma M, Shukla RP, Mugale MN, Kumar A, Mishra PR. Surface-Modified Lyotropic Crystalline Nanoconstructs Bearing Doxorubicin and Buparvaquone Target Sigma Receptors through pH-Sensitive Charge Conversion to Improve Breast Cancer Therapy. Biomacromolecules 2023; 24:5780-5796. [PMID: 38006339 DOI: 10.1021/acs.biomac.3c00795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
In the current study, we aimed to develop lyotropic crystalline nanoconstructs (LCNs) based on poly(l-glutamic acid) (PLG) with a two-tier strategy. The first objective was to confer pH-responsive charge conversion properties to facilitate the delivery of both doxorubicin (DOX) and buparvaquone (BPQ) in combination (B + D@LCNs) to harness their synergistic effects. The second goal was to achieve targeted delivery to sigma receptors within the tumor tissues. To achieve this, we designed a pH-responsive charge conversion system using a polymer consisting of poly(ethylenimine), poly(l-lysine), and poly(l-glutamic acid) (PLG), which was then covalently coupled with methoxybenzamide (MBA) for potential sigma receptor targeting. The resulting B + D@LCNs were further modified by surface functionalization with PLG-MBA to confer both sigma receptor targeting and pH-responsive charge conversion properties. Our observations indicated that at physiological pH 7.4, P/B + D-MBA@LCNs exhibited a negative charge, while under acidic conditions (pH 5.5, characteristic of the tumor microenvironment), they acquired a positive charge. The particle size of P/B + D-MBA@LCNs was determined to be 168.23 ± 2.66 nm at pH 7.4 and 201.23 ± 1.46 nm at pH 5.5. The crystalline structure of the LCNs was confirmed through small-angle X-ray scattering (SAXS) diffraction patterns. Receptor-mediated endocytosis, facilitated by P/B + D-MBA@LCNs, was confirmed using confocal laser scanning microscopy and flow cytometry. The P/B + D-MBA@LCNs formulation demonstrated a higher rate of G2/M phase arrest (55.20%) compared to free B + D (37.50%) and induced mitochondrial depolarization (59.39%) to a greater extent than P/B + D@LCNs (45.66%). Pharmacokinetic analysis revealed significantly improved area under the curve (AUC) values for both DOX and BPQ when administered as P/B + D-MBA@LCNs, along with enhanced tumor localization. Tumor regression studies exhibited a substantial reduction in tumor size, with P/B + D-MBA@LCNs leading to 3.2- and 1.27-fold reductions compared to B + D and nontargeted P/B + D@LCNs groups, respectively. In summary, this two-tier strategy demonstrates substantial promise for the delivery of a drug combination through the prototype formulation. It offers a potential chemotherapeutic option by minimizing toxic effects on healthy cells while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | | | - Akhilesh Kumar
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India
| |
Collapse
|
4
|
Wong KH, Guo Z, Law MK, Chen M. Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomater Sci 2023; 11:1589-1606. [PMID: 36692071 DOI: 10.1039/d2bm01677j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyamidoamines (PAMAMs) are a class of dendrimer with monodispersity and controlled topology, which can deliver biologically active macromolecules (e.g., genes and proteins) to specific regions with high efficiency and minimum side effects. In detail, PAMAMs can be functionalized easily by core modification or surface amendment to encapsulate a wide range of biomacromolecules. Besides, self-assembled, cross-linked and hybrid PAMAMs with customized therapeutic purposes are developed as delivery vehicles, which makes PAMAMs promising for biomacromolecule therapy. In this review, we comprehensively summarize the application of PAMAMs in biomacromolecule delivery from the synthesis of functionalized PAMAM carriers to the development of PAMAM-based drug delivery systems. The underlying strategies for PAMAM functionalization and assembly are first systematically discussed, and then the current applications of PAMAMs for biomacromolecule delivery are reviewed. Finally, a brief perspective on the further applications of PAMAMs concludes, aiming to provide insights into developing PAMAM-based biomacromolecule delivery systems.
Collapse
Affiliation(s)
- Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Zhaopei Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
5
|
Chakraborty A, Dharmaraj S, Truong N, Pearson RM. Excipient-Free Ionizable Polyester Nanoparticles for Lung-Selective and Innate Immune Cell Plasmid DNA and mRNA Transfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56440-56453. [PMID: 36525379 PMCID: PMC9872050 DOI: 10.1021/acsami.2c14424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extrahepatic nucleic acid delivery using polymers typically requires the synthesis and purification of custom monomers, post-synthetic modifications, and incorporation of additional excipients to augment their stability, endosomal escape, and in vivo effectiveness. Here, we report the development of a single-component and excipient-free, polyester-based nucleic acid delivery nanoparticle platform comprising ionizable N-methyldiethanolamine (MDET) and various hydrophobic alkyl diols (Cp) that achieves lung-selective nucleic acid transfection in vivo. PolyMDET and polyMDET-Cp polyplexes displayed high serum and enzymatic stability, while delivering pDNA or mRNA to "hard-to-transfect" innate immune cells. PolyMDET-C4 and polyMDET-C6 mediated high protein expression in lung alveolar macrophages and dendritic cells without inducing tissue damage or systemic inflammatory responses. Improved strategies using readily available starting materials to produce a simple, excipient-free, non-viral nucleic acid delivery platform with lung-selective and innate immune cell tropism has the potential to expedite clinical deployment of polymer-based genetic medicines.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland21201, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, Maryland21201, United States
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, Maryland21201, United States
| |
Collapse
|
6
|
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 2022; 16:18. [PMID: 35879774 PMCID: PMC9317453 DOI: 10.1186/s13036-022-00298-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Since the first dendrimer was reported in 1978 by Fritz Vögtle, dendrimer research has grown exponentially, from synthesis to application in the past four decades. The distinct structure characteristics of dendrimers include nanoscopic size, multi-functionalized surface, high branching, cavernous interior, and so on, making dendrimers themselves ideal drug delivery vehicles. This mini review article provides a brief overview of dendrimer’s history and properties and the latest developments of dendrimers as drug delivery systems. This review focuses on the latest progress in the applications of dendrimers as drug and gene carriers, including 1) active drug release strategies to dissociate drug/gene from dendrimer in response to stimuli; 2) size-adaptive and charge reversal dendrimer delivery systems that can better take advantage of the size and surface properties of dendrimer; 3) bulk and micro/nano dendrimer gel delivery systems. The recent advances in dendrimer formulations may lead to the generation of new drug and gene products and enable the development of novel combination therapies.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Qiao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| |
Collapse
|
7
|
Lei J, Song Y, Li D, Lei M, Tan R, Liu Y, Zheng H. pH
‐sensitive and charge‐reversal Daunorubicin‐conjugated polymeric micelles for enhanced cancer therapy. J Appl Polym Sci 2022. [DOI: 10.1002/app.51535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiaqing Lei
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Yajing Song
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Mengheng Lei
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Rui Tan
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Yiqing Liu
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan PR China
- School of Materials Science and Engineering Wuhan University of Technology Wuhan PR China
| |
Collapse
|
8
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
9
|
Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022; 7:292-323. [PMID: 34466734 PMCID: PMC8379367 DOI: 10.1016/j.bioactmat.2021.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lihua Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Anhong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
10
|
Poudel DP, Taylor RT. Thiol-Ene Click-Inspired Late-Stage Modification of Long-Chain Polyurethane Dendrimers. REACTIONS 2021; 3:12-29. [DOI: 10.3390/reactions3010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The construction of well-defined polyurethane dendrimers is challenging due to the high reactivity of externally added or in situ formed isocyanates leading to the formation of side products. With a primary focus of dendrimer research being the interaction of the periphery and the core, we report the synthesis of a common polyurethane dendron, which allows for the late-stage variation of both the periphery and the core. The periphery can be varied simply by installing a clickable unit in the dendron and then attaching to the core and vice-versa. Thus, a common dendron allows for varying periphery and core in the final two steps. To accomplish this, a protecting group-free, one-pot multicomponent Curtius reaction was utilized to afford a robust and versatile AB2 type polyurethane dendron employing commercially available simple molecules: 5-hydroxyisophthalic acid, 11-bromoundecanol, and 4-penten-1-ol. Subsequent late-stage modifications of either dendrons or dendrimers via a thiol-ene click reaction gave surface-functionalized alternating aromatic-aliphatic polyurethane homodendrimers to generation-three (G3). The dendrons and the dendrimers were characterized by NMR, mass spectrometry, and FT-IR analysis. A bifunctional AB2 type dendritic monomer demonstrated this approach’s versatility that can either undergo a thiol-ene click or attachment to the core. This approach enables the incorporation of functionalities at the periphery and the core that may not withstand the dendrimer growth for the synthesis of polyurethane dendrimers and other dendritic macromolecules.
Collapse
Affiliation(s)
- Dhruba P. Poudel
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard T. Taylor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
11
|
Carbajo-Gordillo AI, Jiménez Blanco JL, Benito JM, Lana H, Marcelo G, Di Giorgio C, Przybylski C, Hinou H, Ceña V, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules 2020; 21:5173-5188. [PMID: 33084317 DOI: 10.1021/acs.biomac.0c01283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.
Collapse
Affiliation(s)
- Ana I Carbajo-Gordillo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - José L Jiménez Blanco
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Christophe Di Giorgio
- Institut de Chimie Nice, UMR 7272, Université Côte d'Azur, 28 Avenue de Valrose, F-06108 Nice, France
| | - Cédric Przybylski
- CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, Paris, France
| | - Hiroshi Hinou
- Graduate School and Faculty of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|