1
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Zhang T, Wu Z, Ng G, Boyer C. Design of an Oxygen-Tolerant Photo-RAFT System for Protein-Polymer Conjugation Achieving High Bioactivity. Angew Chem Int Ed Engl 2023; 62:e202309582. [PMID: 37591792 DOI: 10.1002/anie.202309582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Protein-polymer conjugates have significant potential in pharmaceutical and biomedical applications. To enable their widespread use, robust conjugation techniques are crucial. This study introduces a photo-initiated reversible addition-fragmentation chain-transfer (Photo-RAFT) polymerization system that exhibits excellent oxygen tolerance. This system allows for the synthesis of protein-polymer conjugates with high bioactivity under mild and aerobic conditions. Three photocatalytic systems utilizing Eosin Y (EY) as the photocatalyst with two different cocatalysts (ascorbic acid and triethanolamine) were investigated, each generating distinct reactive oxygen species (ROS) such as singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. The impact of these ROS on three model proteins (lysozyme, albumin, and myoglobin) was evaluated, demonstrating varying bioactivities based on the ROS produced. The EY/TEOA system was identified as the optimal photo-RAFT initiating system, enabling the preparation of protein-polymer conjugates under aerobic conditions while maintaining high protein enzymatic activity. To showcase the potential of this approach, lysozyme-poly(dimethylaminoethyl acrylate) conjugates were successfully prepared and exhibited enhanced antimicrobial property against Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Tong Zhang
- Cluster for Advanced Macromolecular Design and UNSW RNA Institute, School of Chemical Engineering, The University of New South Wales, 2052, Sydney, NSW, Australia
| | - Zilong Wu
- Cluster for Advanced Macromolecular Design and UNSW RNA Institute, School of Chemical Engineering, The University of New South Wales, 2052, Sydney, NSW, Australia
| | - Gervase Ng
- Cluster for Advanced Macromolecular Design and UNSW RNA Institute, School of Chemical Engineering, The University of New South Wales, 2052, Sydney, NSW, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and UNSW RNA Institute, School of Chemical Engineering, The University of New South Wales, 2052, Sydney, NSW, Australia
| |
Collapse
|
3
|
Qiu L, Han X, Xing C, Glebe U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207457. [PMID: 36737834 DOI: 10.1002/smll.202207457] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Indexed: 05/04/2023]
Abstract
The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable. Polymerization-induced self-assembly (PISA), as an efficient and versatile technique in obtaining polymeric nano-objects at high concentrations, has demonstrated to be an attractive alternative to existing self-assembly procedures. Those advantages induce the focus on the fabrication of PBBNs via the PISA technique. In this review, current preparation strategies are illustrated based on the PISA technique for achieving various PBBNs, including grafting-from and grafting-through methods, as well as encapsulation of biomolecules during and subsequent to the PISA process. Finally, advantages and drawbacks are discussed in the fabrication of PBBNs via the PISA technique and obstacles are identified that need to be overcome to enable commercial application.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xinyue Han
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Mathieu‐Gaedke M, Böker A, Glebe U. How to Characterize the Protein Structure and Polymer Conformation in Protein‐Polymer Conjugates – a Perspective. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maria Mathieu‐Gaedke
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Ulrich Glebe
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
5
|
Shirinichi F, Ibrahim T, Rodriguez M, Sun H. Assembling the best of two worlds: Biomolecule‐polymer nanoparticles via polymerization‐induced self‐assembly. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Farbod Shirinichi
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Tarek Ibrahim
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Mia Rodriguez
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| |
Collapse
|
6
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
7
|
Strategies for preparing hybrid nanomaterials via Polymerization-Induced Self-Assembly. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Varlas S, Maitland GL, Derry MJ. Protein-, (Poly)peptide-, and Amino Acid-Based Nanostructures Prepared via Polymerization-Induced Self-Assembly. Polymers (Basel) 2021; 13:2603. [PMID: 34451144 PMCID: PMC8402019 DOI: 10.3390/polym13162603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Proteins and peptides, built from precisely defined amino acid sequences, are an important class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon self-assembly of all-synthetic amphiphilic copolypept(o)ides and amino acid-containing polymers enables access to novel protein-mimicking biomaterials with superior physicochemical properties and immense biorelevant scope. In recent years, polymerization-induced self-assembly (PISA) has been established as an efficient and versatile alternative method to existing self-assembly procedures for the reproducible development of block copolymer nano-objects in situ at high concentrations and, thus, provides an ideal platform for engineering protein-inspired nanomaterials. In this review article, the different strategies employed for direct construction of protein-, (poly)peptide-, and amino acid-based nanostructures via PISA are described with particular focus on the characteristics of the developed block copolymer assemblies, as well as their utilization in various pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Spyridon Varlas
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Georgia L Maitland
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Matthew J Derry
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
9
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Yang H, Lu Z, Fu X, Li Q, Xiao L, Zhao R, Zhao Y, Hou L. Multipath oxygen-mediated PET-RAFT polymerization by a conjugated organic polymer photocatalyst under red LED irradiation. Polym Chem 2021. [DOI: 10.1039/d1py01058a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TCPP-DMTA-COP has been synthesized and serves as a heterogeneous photocatalyst in a multipath aerobic-mediated reductive quenching pathway (O-RQP) for a PET-RAFT polymerization process.
Collapse
Affiliation(s)
- Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Zhen Lu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Qiuyu Li
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Rukai Zhao
- School of Materials Science and Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| |
Collapse
|
11
|
Rho JY, Scheutz GM, Häkkinen S, Garrison JB, Song Q, Yang J, Richardson R, Perrier S, Sumerlin BS. In situ monitoring of PISA morphologies. Polym Chem 2021. [DOI: 10.1039/d1py00239b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescent spectroscopy is a convenient method for monitoring the progression of polymerization-induced self-assembly (PISA).
Collapse
Affiliation(s)
- Julia Y. Rho
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- George & Josephine Butler Polymer Research Laboratory
| | - Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Satu Häkkinen
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Qiao Song
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Jie Yang
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| |
Collapse
|