1
|
Ren M, Qin F, Liu Y, Liu D, Lopes RP, Astruc D, Liang L. Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores. Talanta 2025; 286:127544. [PMID: 39805202 DOI: 10.1016/j.talanta.2025.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions. The nanopore translocation properties reveal that the dispersion and transporting of PEI is pH-dependent, and its capture rate is much lower than that of PAA. The neutral block copolymer with longest molecular chain threads through with longest blockage duration, its highest capture rate was achieved in 0.5 M KCl at pH 5 with slow diffusion and high temporal resolution. The two generations of neutral dendrimers could also translocate under bias potentials, probably due to the ions adsorption on the dendrimers and driven by Brownian force. The TEG-81 with larger molecular size translocates with longer residence time and higher blockage ratio, as expected. Both of the dendrimers exhibit a higher blockage ratio at pH 7.4 than either acidic or alkalic condition, indicating a larger stretched conformation adopted under neutral condition. This work presents the analysis of unimolecular charged and neutral polymers and dendrimers, which will be insightful in understanding the self-assembly motion and transfer of synthetic macromolecules in confined space. It also provides a good indication for deciphering the macromolecule-nanopore interplay under electrophoretic condition.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Jiaotong University, Chongqing, 400014, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Yue Liu
- Chongqing Mental Health Center, Chongqing, 400020, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | | | - Didier Astruc
- ISM, UMR CNRS N° 5255, University of Bordeaux, Talence Cedex, 33405, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| |
Collapse
|
2
|
Aguilella-Arzo M, Hoogerheide DP, Doucet M, Wang H, Aguilella VM. Charged Biological Membranes Repel Large Neutral Molecules by Surface Dielectrophoresis and Counterion Pressure. J Am Chem Soc 2024; 146:2701-2710. [PMID: 38291994 PMCID: PMC10835712 DOI: 10.1021/jacs.3c12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024]
Abstract
Macromolecular crowding is the usual condition of cells. The implications of the crowded cellular environment for protein stability and folding, protein-protein interactions, and intracellular transport drive a growing interest in quantifying the effects of crowding. While the properties of crowded solutions have been extensively studied, less attention has been paid to the interaction of crowders with the cellular boundaries, i.e., membranes. However, membranes are key components of cells and most subcellular organelles, playing a central role in regulating protein channel and receptor functions by recruiting and binding charged and neutral solutes. While membrane interactions with charged solutes are dominated by electrostatic forces, here we show that significant charge-induced forces also exist between membranes and neutral solutes. Using neutron reflectometry measurements and molecular dynamics simulations of poly(ethylene glycol) (PEG) polymers of different molecular weights near charged and neutral membranes, we demonstrate the roles of surface dielectrophoresis and counterion pressure in repelling PEG from charged membrane surfaces. The resulting depletion zone is expected to have consequences for drug design and delivery, the activity of proteins near membrane surfaces, and the transport of small molecules along the membrane surface.
Collapse
Affiliation(s)
- Marcel Aguilella-Arzo
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071, Castellón, Spain
| | - David P. Hoogerheide
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Mathieu Doucet
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hanyu Wang
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vicente M. Aguilella
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071, Castellón, Spain
| |
Collapse
|
3
|
Liu W, Nestorovich EM. Probing Protein Nanopores with Poly(ethylene glycol)s. Proteomics 2022; 22:e2100055. [PMID: 35030301 DOI: 10.1002/pmic.202100055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Neutral water-soluble poly(ethylene glycol)s (PEGs) have been extensively explored in protein nanopore research for the past several decades. The principal use of PEGs is to investigate the membrane protein ion channel physical characteristics and transport properties. In addition, protein nanopores are used to study polymer-protein interactions and polymer physicochemical properties. In this review, we focus on the biophysical studies on probing protein ion channels with PEGs, specifically on nanopore sizing by PEG partitioning. We discuss the fluctuation analysis of ion channel currents in response to the PEGs moving within their confined geometries. The advantages, limitations, and recent developments of the approach are also addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC, 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC, 20064, USA
| |
Collapse
|